ECSP




Pay Notebook Creator: Haige Cui0
Set Container: Numerical CPU with TINY Memory for 10 Minutes 0
Total0
In [2]:
# CrossCompute
ready_table_path = 'Table with periodic savings(within 0.5 Mile) and tree count(within 0.5 Mile).csv'
#user_address = ""
target_folder = '/tmp'
In [3]:
import pandas as pd
import numpy as np
import matplotlib 
import matplotlib.pyplot as plt

from sklearn import model_selection
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import BayesianRidge
from sklearn.svm import SVR
matplotlib.rcParams['figure.figsize'] = (10,10)

import subprocess
subprocess.call('pip install geopandas'.split())
subprocess.call('pip install dill'.split())
Out[3]:
0
In [4]:
subprocess.call('pip install geopy'.split())
subprocess.call('pip install folium'.split())

from geopy import GoogleV3
import folium

Render Map

In [5]:
ready_table = pd.read_csv(ready_table_path)  # Prevent SettingwithCopyWarning
ready_table[:3]
Out[5]:
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
Unnamed: 0 Company Name Address Industry Program Effective Date Savings Borough Latitude Longitude Month Count Periodic Savings over Months Total Tree Count within 0.5 Mile Periodic Savings within 0.5 Mile
0 0 139 ACA Realty, Inc. 43-23 35th Street Commercial ICIP 2008-04-07 123975.24 QUEENS 40.745706 -73.929565 116 1068.75 1331 1419.727333
1 1 141 Lake Avenue Realty c/o JR Produce, Inc. 141 Lake Avenue Wholesale/Warehouse/Distribution ICIP 2009-12-08 47512.89 STATEN IS 40.633153 -74.150999 96 494.93 1390 336.525000
2 2 14-10 123rd Street LLC 14-10 123rd Street Commercial ICIP 2011-03-04 21322.89 QUEENS 40.785144 -73.844833 81 263.25 2195 1079.380000
In [6]:
ready_table=ready_table.drop(ready_table.columns[0], axis=1) 
ready_table[:3]
Out[6]:
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
Company Name Address Industry Program Effective Date Savings Borough Latitude Longitude Month Count Periodic Savings over Months Total Tree Count within 0.5 Mile Periodic Savings within 0.5 Mile
0 139 ACA Realty, Inc. 43-23 35th Street Commercial ICIP 2008-04-07 123975.24 QUEENS 40.745706 -73.929565 116 1068.75 1331 1419.727333
1 141 Lake Avenue Realty c/o JR Produce, Inc. 141 Lake Avenue Wholesale/Warehouse/Distribution ICIP 2009-12-08 47512.89 STATEN IS 40.633153 -74.150999 96 494.93 1390 336.525000
2 14-10 123rd Street LLC 14-10 123rd Street Commercial ICIP 2011-03-04 21322.89 QUEENS 40.785144 -73.844833 81 263.25 2195 1079.380000
In [7]:
ready_geotable = ready_table.copy()
ready_geotable[:3]
Out[7]:
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
Company Name Address Industry Program Effective Date Savings Borough Latitude Longitude Month Count Periodic Savings over Months Total Tree Count within 0.5 Mile Periodic Savings within 0.5 Mile
0 139 ACA Realty, Inc. 43-23 35th Street Commercial ICIP 2008-04-07 123975.24 QUEENS 40.745706 -73.929565 116 1068.75 1331 1419.727333
1 141 Lake Avenue Realty c/o JR Produce, Inc. 141 Lake Avenue Wholesale/Warehouse/Distribution ICIP 2009-12-08 47512.89 STATEN IS 40.633153 -74.150999 96 494.93 1390 336.525000
2 14-10 123rd Street LLC 14-10 123rd Street Commercial ICIP 2011-03-04 21322.89 QUEENS 40.785144 -73.844833 81 263.25 2195 1079.380000

We tried color coded industry and program on map but it didn't work

In [8]:
# ind_progm_table=pd.get_dummies(ready_geotable,columns=['Industry'])
# ind_progm_table=pd.get_dummies(ind_progm_table,columns=['Program'])
# ind_progm_table
ready_geotable['RadiusInPixelsRange5-50'] = ready_geotable['Industry_Commercial'	,
# 'Industry_Landlord'	,
# 'Industry_Manufacturing',	
# 'Industry_Other',	
# 'Industry_Public Benefit Corp',	
# 'Industry_Wholesale/Warehouse/Distribution']
  File "<ipython-input-8-2223b67b816c>", line 9
    # 'Industry_Wholesale/Warehouse/Distribution']
                                                  ^
SyntaxError: unexpected EOF while parsing
In [ ]:
ind_progm_table[:5]
In [ ]:
# Set radius for each point
# The bigger the circle, the more the company saved
ready_geotable['RadiusInPixelsRange5-50'] = ready_geotable['Periodic Savings over Months']
In [ ]:
# Set color for each point using a gradient
# The darker the color, the more trees the company is surrounded by
ready_geotable['FillBluesFromMean'] = ready_geotable['Total Tree Count within 0.5 Mile']
In [ ]:
# See what we did
ready_geotable[:3]

Hypothesis:<br>

  • Bigger circle tend to be darker<br>
  • Also, companies who saved the more money tend to be surrounded by more trees.<br>

Discovery:<br>

  • Biggest circles are found in Bronx and STATEN IS<br>
  • Bigger circles in Bronx are indeed surrounded by more trees<br> <font color=red>(ex.Albert Einstein College of Medicine of Yeshiva Uni, saved 102919.54 dollars, surrounded by 419 trees; Montefiore Medical Center, saved 11400.63 in ICAP and 69506.82 in ICIP, surrounded by 303 trees) <br> <font color=black>- While the biggest circle of all is found in Stanley IS but the color is near transparent(means very few trees around) <br> <font color=red>(ex.VISY PAPER RECYCLING saved 274038.51, 41 trees)
In [ ]:
# Save file to target folder to include it in the result download
target_path = target_folder + '/b.csv'
ready_geotable.to_csv(target_path, index=False)
print(f'b_geotable_path = {target_path}')  # Print geotable_path to render map

Render Plot

In [ ]:
#import data analysis package

import seaborn
import scipy
import matplotlib.pyplot as plt

ready_table.drop(ready_table[ready_table['Periodic Savings over Months'] > 20000].index, inplace=True)
    
# bug fix for display formats to avoid run time errors
pd.set_option('display.float_format', lambda x:'%f'%x)

#plot alcohol consumption and suicide rate as a scatterplot
scat1 = seaborn.regplot(x='Total Tree Count within 0.5 Mile', y='Periodic Savings over Months', data=ready_table)
plt.xlabel('Total Tree Count within 0.5 Mile')
plt.ylabel('Periodic Savings over Months')
plt.title('Scatterplot for the Association Between Tree Count and Periodic Savings')
In [ ]:
#get the correlation coefficient
print('Association Between Tree Count and Periodic Savings')
print(scipy.stats.pearsonr(ready_table['Total Tree Count within 0.5 Mile'], ready_table['Periodic Savings over Months']))
In [ ]:
# Save file to target folder to include it in the result download
target_path = target_folder + '/c.png'
figure = scat1.get_figure()
figure.savefig(target_path)
print(f'c_image_path = {target_path}')
print('Association Between Tree Count and Periodic Savings')
print(scipy.stats.pearsonr(ready_table['Total Tree Count within 0.5 Mile'], 
                           ready_table['Periodic Savings over Months']))

Training Model

In [1]:
prediction_table = ready_table.copy()
prediction_table[:3]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-6e7f80355573> in <module>
----> 1 prediction_table = ready_table.copy()
      2 prediction_table[:3]

NameError: name 'ready_table' is not defined
In [15]:
prediction_table = prediction_table[['Total Tree Count within 0.5 Mile',
                                     'Periodic Savings within 0.5 Mile', 'Periodic Savings over Months']]
prediction_table.head()
Out[15]:
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
Total Tree Count within 0.5 Mile Periodic Savings within 0.5 Mile Periodic Savings over Months
0 1331 1419.727333 1068.750000
1 1390 336.525000 494.930000
2 2195 1079.380000 263.250000
3 1254 2846.165714 4200.660000
4 1136 1517.730217 2016.420000
In [16]:
prediction_table.plot(kind = 'box', subplots = True, layout = (1,3), sharex = False, sharey = False)
plt.show() #what's that outlier in our savings? 
In [17]:
X1 = prediction_table[['Periodic Savings within 0.5 Mile','Total Tree Count within 0.5 Mile']].values
Y1 = prediction_table['Periodic Savings over Months']
In [18]:
model1 = LinearRegression()
model1.fit(X1, Y1)
cross_val_score(model1, X1, Y1, cv=3, scoring='neg_mean_absolute_error').mean()
Out[18]:
-1680.9851844200355
In [19]:
model2 = BayesianRidge()
model2.fit(X1, Y1)
cross_val_score(model2, X1, Y1, cv=3, scoring='neg_mean_absolute_error').mean()
Out[19]:
-1679.2847550478734
In [20]:
model3 = SVR()
model3.fit(X1, Y1)
cross_val_score(model3, X1, Y1, cv=3, scoring='neg_mean_absolute_error').mean()
/home/user/.virtualenvs/crosscompute/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
/home/user/.virtualenvs/crosscompute/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
/home/user/.virtualenvs/crosscompute/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
/home/user/.virtualenvs/crosscompute/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
  "avoid this warning.", FutureWarning)
Out[20]:
-1494.6005428121223
In [21]:
import pickle
pickle.dump(model2, open('/tmp/model.pkl', 'wb'))
In [22]:
# Load model
from pickle import load
model = load(open('/tmp/model.pkl', 'rb'))  # !!! Replace dummy model with your model
model
Out[22]:
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
       fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
       normalize=False, tol=0.001, verbose=False)
In [23]:
url2 = 'https://raw.githubusercontent.com/wzmemo/NYC_Open_Data_Business_Savings/master/Testing_Data.csv'
testing_table = pd.read_csv(url2)
In [24]:
testing_table = testing_table.drop(['Unnamed: 0'], axis = 1)
In [25]:
X = testing_table[['Total Tree Count within 0.5 Mile', 'Periodic Savings within 0.5 Mile']].values
y = model.predict(X)
y
Out[25]:
array([1373.78583903, 1329.47751343, 1352.70225448])
In [26]:
testing_table['Periodic Savings over Months'] = y
testing_table
Out[26]:
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
Address Total Tree Count within 0.5 Mile Periodic Savings within 0.5 Mile Periodic Savings over Months
0 43-23 35th Street 683 1423.931818 1373.785839
1 141 Lake Avenue 21 336.525000 1329.477513
2 14-10 123rd Street 447 1079.380000 1352.702254

Render Table

In [27]:
# Save file to target folder to include it in the result download
target_path = target_folder + '/a.csv'
testing_table.to_csv(target_path, index=False)
print(f'a_table_path = {target_path}')  # Print table_path to render table
a_table_path = /tmp/a.csv
In [28]:
# A step further: 
prediction_table.plot(kind = 'box', subplots = True, layout = (1,3), sharex = False, sharey = False)
plt.show() #what's are outliers in our savings? 

Check statistics from Participants in ECSP

YOUR INTERPRETATION OF THE RESULTS

{Participants statistics : Participants statistics ? YOUR TABLE DESCRIPTION}

{Participants on map : Participants on map ? YOUR MAP DESCRIPTION}

{Association Between Tree Count and Periodic Savings : Association Between Tree Count and Periodic Savings ? YOUR PLOT DESCRIPTION}

In [ ]: