Opening your session in 90 seconds...
Please note that we are starting a new machine for you, which takes more time.
If your browser keeps redirecting back and forth from this page in an endless loop, it is possible that you are using an older browser. Please update Google Chrome or use Mozilla Firefox.
#CrossCompute
outcome_select = """
Total Grads - % of cohort
Total Grads - % of cohort
Total Grads - n
Total Regents - n
Total Regents - % of cohort
Total Regents - % of grads
Advanced Regents - n
Advanced Regents - % of cohort
Advanced Regents - % of grads
Regents w/o Advanced - n
Regents w/o Advanced - % of cohort
Regents w/o Advanced - % of grads
Local - n
Local - % of cohort
Local - % of grads
Still Enrolled - n
Still Enrolled - % of cohort
Dropped Out - n
Dropped Out - % of cohort
"""
attribute_select = """
diversity_index
diversity_index
"""
# attribute_select = """
# diversity_index
# diversity_index
# economic_need_index
# students_with_disabilities_2
# english_language_learners_2
# female_2
# """
target_folder = '/tmp'
selected_outcome = outcome_select.strip().splitlines()[0]
selected_outcome
selected_attribute = attribute_select.strip().splitlines()[0]
selected_attribute
'diversity_index'
url = 'https://data.cityofnewyork.us/api/geospatial/r8nu-ymqj?method=export&format=Shapefile'
import geotable
dist_table = geotable.load(url)
dist_table.iloc[0]
school_dis 16 shape_area 4.67636e+07 shape_leng 35848.9 geometry_object POLYGON ((-73.93311862859143 40.69579115384632... geometry_layer geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b geometry_proj4 +proj=longlat +ellps=WGS84 +no_defs Name: 0, dtype: object
url = 'https://data.cityofnewyork.us/resource/98et-3mve.csv'
import pandas as pd
def load(
endpoint_url,
selected_columns=None,
buffer_size=1000,
search_term_by_column=None,
**kw,
):
buffer_url = (f'{endpoint_url}?$limit={buffer_size}')
if selected_columns:
select_string = ','.join(selected_columns)
buffer_url += f'&$select={select_string}'
for column, search_term in (search_term_by_column or {}).items():
buffer_url += f'&$where={column}+like+"%25{search_term}%25"'
print(buffer_url)
tables = []
if endpoint_url.endswith('.json'):
f = pd.read_json
else:
f = pd.read_csv
t = f(buffer_url, **kw)
while len(t):
print(len(tables) * buffer_size + len(t))
tables.append(t)
offset = buffer_size * len(tables)
t = f(buffer_url + f'&$offset={offset}', **kw)
return pd.concat(tables, ignore_index=True, sort=False)
demo_table = load(url, na_values=['No Data'])
https://data.cityofnewyork.us/resource/98et-3mve.csv?$limit=1000 1000 2000 3000 4000 5000 6000 7000 8000 8972
demo_table = demo_table[demo_table.year == '2016-17']
demo_table.iloc[0]
asian_1 14 asian_2 7.9 black_1 51 black_2 28.7 dbn 01M015 economic_need_index 89.2% english_language_learners_1 12 english_language_learners_2 6.7 female_1 83 female_2 46.6 grade_1 33 grade_10 0 grade_11 0 grade_12 0 grade_2 27 grade_3 31 grade_4 24 grade_5 18 grade_6 0 grade_7 0 grade_8 0 grade_9 0 grade_k 28 grade_pk_half_day_full_day 17 hispanic_1 105 hispanic_2 59 male_1 95 male_2 53.4 multiple_race_categories_not_represented_1 4 multiple_race_categories_not_represented_2 2.2 poverty_1 152 poverty_2 85.4 school_name P.S. 015 Roberto Clemente students_with_disabilities_1 51 students_with_disabilities_2 28.7 total_enrollment 178 white_1 4 white_2 2.2 year 2016-17 Name: 3, dtype: object
# ADD DIVERSITY INDEX
def d_index(row):
o = row['multiple_race_categories_not_represented_2']
total = 100 - o
target = total / 4
abs_distance = (abs(target - row['asian_2'])) + abs((target - row['black_2'])) + abs((target - row['hispanic_2'])) + abs((target - row['white_2']))
if o == 0.0:
return abs_distance
if o > 0.0:
# diversity index
return abs_distance * (1/o)
demo_table['diversity_index'] = demo_table.apply(d_index, axis=1)
from sklearn import preprocessing
x = demo_table['diversity_index'].values.reshape(-1,1) #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
demo_table['scaled_index'] = pd.DataFrame(x_scaled)
len(demo_table.scaled_index)
1823
demo_table.scaled_index.describe()
count 367.000000 mean 0.062403 std 0.084847 min 0.000910 25% 0.015049 50% 0.032192 75% 0.072222 max 0.695898 Name: scaled_index, dtype: float64
demo_table.iloc[0]
asian_1 14 asian_2 7.9 black_1 51 black_2 28.7 dbn 01M015 economic_need_index 89.2% english_language_learners_1 12 english_language_learners_2 6.7 female_1 83 female_2 46.6 grade_1 33 grade_10 0 grade_11 0 grade_12 0 grade_2 27 grade_3 31 grade_4 24 grade_5 18 grade_6 0 grade_7 0 grade_8 0 grade_9 0 grade_k 28 grade_pk_half_day_full_day 17 hispanic_1 105 hispanic_2 59 male_1 95 male_2 53.4 multiple_race_categories_not_represented_1 4 multiple_race_categories_not_represented_2 2.2 poverty_1 152 poverty_2 85.4 school_name P.S. 015 Roberto Clemente students_with_disabilities_1 51 students_with_disabilities_2 28.7 total_enrollment 178 white_1 4 white_2 2.2 year 2016-17 diversity_index 35.2727 scaled_index 0.096328 Name: 3, dtype: object
selected_attribute
'diversity_index'
len(demo_table)
if selected_attribute in demo_table:
demo_table = demo_table.dropna(subset=[selected_attribute])
if type(demo_table[selected_attribute]) == str:
demo_table[selected_attribute] = demo_table[selected_attribute].str.replace('%', '')
demo_table[selected_attribute] = demo_table[selected_attribute].astype('float')
selected_attribute
'diversity_index'
demo_table.year
3 2016-17 8 2016-17 13 2016-17 18 2016-17 23 2016-17 28 2016-17 33 2016-17 38 2016-17 43 2016-17 48 2016-17 53 2016-17 58 2016-17 63 2016-17 68 2016-17 73 2016-17 78 2016-17 83 2016-17 88 2016-17 93 2016-17 98 2016-17 103 2016-17 109 2016-17 114 2016-17 119 2016-17 124 2016-17 129 2016-17 133 2016-17 138 2016-17 143 2016-17 148 2016-17 ... 8839 2016-17 8843 2016-17 8847 2016-17 8851 2016-17 8855 2016-17 8860 2016-17 8863 2016-17 8866 2016-17 8871 2016-17 8876 2016-17 8879 2016-17 8884 2016-17 8887 2016-17 8892 2016-17 8897 2016-17 8902 2016-17 8905 2016-17 8910 2016-17 8915 2016-17 8920 2016-17 8925 2016-17 8927 2016-17 8929 2016-17 8940 2016-17 8945 2016-17 8950 2016-17 8955 2016-17 8960 2016-17 8965 2016-17 8970 2016-17 Name: year, Length: 1823, dtype: object
#demo_table['Diversity Index'] = demo_table['economic_need_index']
endpoint_url = 'https://data.cityofnewyork.us/resource/r2nx-nhxe.csv'
# Load schools
school_location_table = load(
endpoint_url,
buffer_size=1000)
school_location_table[:5]
https://data.cityofnewyork.us/resource/r2nx-nhxe.csv?$limit=1000 1000 1823
:@computed_region_92fq_4b7q | :@computed_region_efsh_h5xi | :@computed_region_f5dn_yrer | :@computed_region_sbqj_enih | :@computed_region_yeji_bk3q | admin_district_location_code | administrative_district_name | ats_system_code | beds_number | borough_block_lot | ... | primary_building_code | principal_name | principal_phone_number | principal_title | school_support_team_leader_name | school_support_team_name | state_code | status_descriptions | x_coordinate | y_coordinate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 50.0 | 11729.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M015 | 310100010015 | 1003740020 | ... | M015 | IRENE SANCHEZ | 212-228-8730 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 990141.0 | 202349.0 |
1 | 50.0 | 11724.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M019 | 310100010019 | 1004530034 | ... | M019 | JACQUELINE FLANAGAN | 212-533-5340 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 988547.0 | 205239.0 |
2 | 32.0 | 11723.0 | 70.0 | 4.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M020 | 310100010020 | 1003550001 | ... | M020 | SARAH PINTO VIAGRAN | 212-254-9577 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 988044.0 | 202068.0 |
3 | 50.0 | 11729.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M034 | 310100010034 | 1003810038 | ... | M034 | ANGELIKI LOUKATOS | 212-228-4433 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 991163.0 | 203782.0 |
4 | 50.0 | 11729.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M063 | 310100010063 | 1004310014 | ... | M063 | DARLENE CAMERON | 212-674-3180 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 988071.0 | 203210.0 |
school_location_table.iloc[0]
:@computed_region_92fq_4b7q 50 :@computed_region_efsh_h5xi 11729 :@computed_region_f5dn_yrer 70 :@computed_region_sbqj_enih 5 :@computed_region_yeji_bk3q 4 admin_district_location_code M801 administrative_district_name COMMUNITY SCHOOL DISTRICT 01 ats_system_code 01M015 beds_number 310100010015 borough_block_lot 1003740020 census_tract 2601 community_district 103 community_school_sup_name PHILLIPS, DANIELLA council_district 2 fax_number 212-477-0931 field_support_center_leader_name CHU, YUET field_support_center_name Field Support Center - Manhattan fiscal_year 2018 geographical_district_code 1 grades_final_text PK,0K,01,02,03,04,05 grades_text PK,0K,01,02,03,04,05,SE highschool_network_location_code NaN highschool_network_name NaN highschool_network_superintendent NaN location_1 POINT (-73.978747 40.722075) location_1_address 333 EAST 4 STREET location_1_city MANHATTAN location_1_state NY location_1_zip 10009 location_category_description Elementary location_code M015 location_name P.S. 015 Roberto Clemente location_type_description General Academic managed_by_name DOE nta MN28 nta_name Lower East Side ... open_date 1904-07-01T00:00:00.000 primary_address_line_1 333 EAST 4 STREET primary_building_code M015 principal_name IRENE SANCHEZ principal_phone_number 212-228-8730 principal_title PRINCIPAL school_support_team_leader_name NaN school_support_team_name School Support Team 3- Manhattan state_code NY status_descriptions Open x_coordinate 990141 y_coordinate 202349 Name: 0, dtype: object
school_location_table.iloc[0]['location_1']
'POINT (-73.978747 40.722075)'
school_location_table.iloc[0]['ats_system_code']
'01M015 '
school_location_table['DBN'] = school_location_table['ats_system_code'].str.strip()
school_location_table.iloc[0]['DBN']
'01M015'
school_location_table = school_location_table.rename(columns={
'location_1': 'WKT',
'location_name': 'School Name',
})
trimmed_school_location_table = school_location_table[[
'DBN',
'WKT',
'School Name',
]]
school_table = pd.merge(
trimmed_school_location_table,
demo_table,
left_on='DBN',
right_on='dbn')
len(school_table)
1802
school_table = school_table.dropna(subset=['WKT'])
len(school_table)
1801
school_table.iloc[0]
DBN 01M015 WKT POINT (-73.978747 40.722075) School Name P.S. 015 Roberto Clemente asian_1 14 asian_2 7.9 black_1 51 black_2 28.7 dbn 01M015 economic_need_index 89.2% english_language_learners_1 12 english_language_learners_2 6.7 female_1 83 female_2 46.6 grade_1 33 grade_10 0 grade_11 0 grade_12 0 grade_2 27 grade_3 31 grade_4 24 grade_5 18 grade_6 0 grade_7 0 grade_8 0 grade_9 0 grade_k 28 grade_pk_half_day_full_day 17 hispanic_1 105 hispanic_2 59 male_1 95 male_2 53.4 multiple_race_categories_not_represented_1 4 multiple_race_categories_not_represented_2 2.2 poverty_1 152 poverty_2 85.4 school_name P.S. 015 Roberto Clemente students_with_disabilities_1 51 students_with_disabilities_2 28.7 total_enrollment 178 white_1 4 white_2 2.2 year 2016-17 diversity_index 35.2727 scaled_index 0.096328 Name: 0, dtype: object
dist_table.iloc[0]
school_dis 16 shape_area 4.67636e+07 shape_leng 35848.9 geometry_object POLYGON ((-73.93311862859143 40.69579115384632... geometry_layer geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b geometry_proj4 +proj=longlat +ellps=WGS84 +no_defs Name: 0, dtype: object
geometry_wkt = school_table.iloc[0]['WKT']
geometry_wkt
'POINT (-73.978747 40.722075)'
from shapely import wkt
g = wkt.loads(geometry_wkt)
g
<shapely.geometry.point.Point at 0x7fbaa0032940>
district_polygons = dist_table['geometry_object']
flags = [x.contains(g) for x in district_polygons]
flags
[False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]
import numpy as np
index = np.argmax(flags)
dist_table.iloc[index]
school_dis 1 shape_area 3.51607e+07 shape_leng 28641.3 geometry_object POLYGON ((-73.97177410965313 40.72582128133706... geometry_layer geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b geometry_proj4 +proj=longlat +ellps=WGS84 +no_defs Name: 17, dtype: object
index
17
len(flags)
33
int(dist_table.iloc[index]['school_dis'])
1
len(school_table)
1801
from geotable import ColorfulGeometryCollection, GeoTable
dist_table
school_dis | shape_area | shape_leng | geometry_object | geometry_layer | geometry_proj4 | |
---|---|---|---|---|---|---|
0 | 16.0 | 4.676362e+07 | 35848.904605 | POLYGON ((-73.93311862859143 40.69579115384632... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
1 | 32.0 | 5.189850e+07 | 37251.057847 | POLYGON ((-73.91180710069435 40.70343495202662... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
2 | 6.0 | 9.634170e+07 | 70447.849084 | POLYGON ((-73.92640556921116 40.87762147653734... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
3 | 31.0 | 1.604472e+09 | 434471.412859 | (POLYGON ((-74.05050806403247 40.5664220341608... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
4 | 7.0 | 9.226247e+07 | 65294.452403 | (POLYGON ((-73.89680883223774 40.7958084451597... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
5 | 23.0 | 4.740069e+07 | 40317.452033 | (POLYGON ((-73.92044366203014 40.6656262871675... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
6 | 29.0 | 4.201981e+08 | 135035.241651 | POLYGON ((-73.73816144093141 40.72895809117297... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
7 | 26.0 | 4.247909e+08 | 125677.678898 | POLYGON ((-73.74344992332192 40.77824115291502... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
8 | 15.0 | 1.961534e+08 | 153439.165680 | POLYGON ((-73.98633135042395 40.69105051012824... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
9 | 17.0 | 1.284414e+08 | 68341.398899 | POLYGON ((-73.92044366203014 40.6656262871675,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
10 | 19.0 | 2.034175e+08 | 184183.167312 | (POLYGON ((-73.846736514711 40.60485301485166,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
11 | 13.0 | 1.048706e+08 | 86635.210559 | POLYGON ((-73.97906084911834 40.70594602894087... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
12 | 18.0 | 1.751488e+08 | 121184.158477 | (POLYGON ((-73.86706149472118 40.5820879767934... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
13 | 20.0 | 2.426965e+08 | 94309.778946 | POLYGON ((-74.02552971543656 40.65147855069281... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
14 | 3.0 | 1.134889e+08 | 52072.051321 | POLYGON ((-73.95671863064405 40.78660079332199... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
15 | 5.0 | 5.251977e+07 | 44469.588221 | POLYGON ((-73.93515659239551 40.83268240623763... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
16 | 9.0 | 8.341539e+07 | 46648.958586 | POLYGON ((-73.9212971968614 40.85428933985649,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
17 | 1.0 | 3.516075e+07 | 28641.276279 | POLYGON ((-73.97177410965313 40.72582128133706... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
18 | 14.0 | 1.503102e+08 | 95792.082090 | POLYGON ((-73.95439555417087 40.73911477252251... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
19 | 4.0 | 5.262043e+07 | 52061.828459 | (POLYGON ((-73.92133752419399 40.8008521064970... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
20 | 10.0 | 2.825415e+08 | 94957.570434 | POLYGON ((-73.86789798628736 40.90294017690526... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
21 | 12.0 | 6.907182e+07 | 48527.595776 | POLYGON ((-73.88284445574813 40.84781722645163... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
22 | 25.0 | 4.436285e+08 | 175827.007127 | POLYGON ((-73.82049919995312 40.80101146781899... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
23 | 28.0 | 2.475679e+08 | 114694.912786 | POLYGON ((-73.84485477879177 40.7357514698091,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
24 | 24.0 | 3.949782e+08 | 127343.703736 | (POLYGON ((-73.90641585511733 40.7398683641967... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
25 | 30.0 | 3.181290e+08 | 150392.978241 | POLYGON ((-73.90647314610101 40.79018117520807... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
26 | 21.0 | 2.101971e+08 | 123858.087345 | POLYGON ((-73.96184657346174 40.62757081710622... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
27 | 22.0 | 3.855533e+08 | 271718.504936 | (POLYGON ((-73.91990064270161 40.5996005215871... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
28 | 27.0 | 7.955970e+08 | 589135.490708 | (POLYGON ((-73.82784008953526 40.5887858248046... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
29 | 11.0 | 3.926651e+08 | 305305.869806 | (POLYGON ((-73.78833349834532 40.8346671297593... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
30 | 8.0 | 2.588266e+08 | 223080.044096 | (POLYGON ((-73.83979488562292 40.8356192069902... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
31 | 2.0 | 2.804004e+08 | 212406.819436 | (POLYGON ((-74.0438776163991 40.69018767537123... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
32 | 10.0 | 3.282963e+06 | 7883.372664 | (POLYGON ((-73.9089323517538 40.8721573479701,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs |
dist_table.geometry_object[0].wkt
'POLYGON ((-73.93311862859143 40.69579115384632, -73.93236605675587 40.69535837729649, -73.9319289006206 40.6951146575314, -73.93177404555487 40.69502821484371, -73.93147184545109 40.69486090242515, -73.93121199886629 40.69471276978224, -73.93114516482393 40.69467397486358, -73.930511465969 40.69431652304853, -73.92970192402746 40.69386339761171, -73.92882897891457 40.69335047407161, -73.92882834168937 40.6933500992537, -73.92864268981751 40.69324101255102, -73.92850659671787 40.69316572635911, -73.92804330687132 40.69290417236994, -73.92781120671985 40.6927742086535, -73.92750685270927 40.69260381145623, -73.92707069461525 40.69234622359373, -73.92644992133326 40.69200176882866, -73.92631612531525 40.69192845396802, -73.92556064122292 40.691490840003, -73.92534903613239 40.69136694183798, -73.92439183303664 40.69083174877439, -73.92429213268012 40.69077335685399, -73.92364379835564 40.6903988375817, -73.92316966710699 40.69012340599072, -73.92280702359515 40.68992392534457, -73.92207133797079 40.68948984079818, -73.92130587808545 40.68907164359784, -73.92121369950202 40.68901947711544, -73.92096103866248 40.68887205183747, -73.92055013077213 40.68864092211603, -73.91980961874593 40.6882112414115, -73.91906109224908 40.68778436875932, -73.91878323293736 40.68762608844376, -73.91829345832642 40.68735666781527, -73.91804606958546 40.68721324726834, -73.91768113918805 40.68700409429878, -73.91755226067554 40.68693022304933, -73.91679832884886 40.68649719987184, -73.91679482480477 40.68647585566188, -73.91677745031008 40.68637001456988, -73.9167269298151 40.6861315560806, -73.91739374561757 40.68605758524438, -73.91784937410198 40.68623316741141, -73.91800616261635 40.6858220326253, -73.91770109452972 40.68550035866507, -73.9178810736956 40.68509394091895, -73.91755763291395 40.68476719192117, -73.91776142009367 40.68432465483016, -73.91741294336087 40.68403405152289, -73.91758679937763 40.68391130921148, -73.91754176551858 40.68365836480015, -73.91749199778137 40.68340840097156, -73.91726632656643 40.68330322455323, -73.91748255687848 40.68289735539763, -73.91712138528143 40.68256847168654, -73.91732345753172 40.68244571271426, -73.9172785838021 40.68218148175983, -73.91722749280017 40.68193500491278, -73.9169763289098 40.68183415891587, -73.91717325370381 40.68163401677827, -73.91713117516936 40.68143498166116, -73.91708045205013 40.68119847288923, -73.91683011483136 40.68110098072739, -73.91676207442167 40.68075559994087, -73.91668638370811 40.68037137878948, -73.9165399872181 40.67963749735295, -73.91639300075401 40.67890584888099, -73.91630119795475 40.67857711243357, -73.91635492184039 40.6778235366874, -73.91645747530021 40.67672602823275, -73.91646486032333 40.67664704004651, -73.91647371343048 40.67655700413084, -73.91654436298559 40.67583843461703, -73.91661697848021 40.67505994757939, -73.91668911898741 40.67428057620312, -73.91677231309316 40.67339069306274, -73.91721449620965 40.67385599371995, -73.91907827608151 40.67397531376398, -73.91954092546408 40.67354187795393, -73.9200025573228 40.67398128283877, -73.92158580075649 40.67405555683759, -73.92213153379178 40.67368388950964, -73.92298622413946 40.67373038435373, -73.92309797315002 40.67373646296576, -73.92324436873267 40.67374442565551, -73.92336008453272 40.67375071908456, -73.92508152301917 40.67384433817344, -73.92550081445938 40.67361688849451, -73.92743998148244 40.67370890462769, -73.92784085188026 40.67399598368088, -73.92788485920073 40.67355077838425, -73.92792887672408 40.67310556484484, -73.9282445167355 40.67293933694761, -73.9282717980865 40.67252471210702, -73.92801317657924 40.67220920817189, -73.92826528535652 40.67222507724347, -73.92833507240064 40.67222889379835, -73.92843446083054 40.67223432828423, -73.92851854078968 40.67223892474855, -73.92862604211787 40.67224480269724, -73.92870956326151 40.67224936969293, -73.92882833736527 40.67225586323351, -73.92891232629145 40.67226045499795, -73.92939948737151 40.67228708901998, -73.9307932883315 40.67236495699643, -73.93355357161703 40.67251450202632, -73.9363431994143 40.67269957696197, -73.93667540626117 40.6727143953574, -73.93682717835949 40.67271928165021, -73.93708255238936 40.67272750062104, -73.93754574483314 40.672742485227, -73.93753568983917 40.67332211170566, -73.93753114689092 40.67358374466557, -73.93752485721895 40.67394597310864, -73.93751992857378 40.67422980176767, -73.93806258654983 40.67447201037736, -73.93832822275243 40.67458578836195, -73.93889518673745 40.67459873386304, -73.93877769674783 40.67472089131839, -73.93873696341934 40.67538905896871, -73.93884149817444 40.67549215171548, -73.93843297207545 40.67556514632768, -73.93852793096612 40.67617239034053, -73.93876783935517 40.67627240938755, -73.93853686439037 40.67634626398586, -73.93843334915296 40.67693817086859, -73.9386949143591 40.67705082000203, -73.93851537899995 40.67741865687472, -73.93863289914781 40.67776992010254, -73.93862492563589 40.67786256958296, -73.9386168305744 40.67794381002248, -73.93850818855235 40.67903432002991, -73.93843613326652 40.67978585170399, -73.93739763665229 40.67972990017674, -73.93764243456839 40.68096300863983, -73.93778801579033 40.68169433234844, -73.9348625715524 40.68203056869989, -73.93500821720075 40.68276376850579, -73.93515472893986 40.68349718465807, -73.93807695931454 40.68316090298936, -73.9382232586039 40.68389329800515, -73.93836816506894 40.68462560189113, -73.93851929553905 40.68535451524578, -73.93865905188188 40.68609038907362, -73.93880456947376 40.68682474574926, -73.93895074350998 40.68755641035276, -73.93938561082579 40.68787113499809, -73.9413859614605 40.6876682688049, -73.94178527584324 40.68722837212115, -73.9423520278467 40.68759150082202, -73.94428391577316 40.68738505531383, -73.94462127846789 40.68690436166384, -73.94471297541574 40.68737334166219, -73.94472684342399 40.68744426893098, -73.94476925905255 40.6876366000215, -73.94489497385723 40.68828685373113, -73.94491170954201 40.68837022260124, -73.94505645129829 40.68910234632374, -73.94519881242742 40.68983988030254, -73.94534976297854 40.69056729694257, -73.94549553209639 40.69130013188384, -73.94564166805849 40.69203345190423, -73.94578713653169 40.69276523278351, -73.94593170750511 40.69349761558435, -73.94607851790597 40.69423024360605, -73.94324249086142 40.69455748523078, -73.94338802084518 40.69528898951384, -73.94352527471476 40.69603085523811, -73.94335303762136 40.69605059879613, -73.94321604415771 40.69606631370468, -73.94279300209647 40.69611479586432, -73.94242149063366 40.69615738067107, -73.9423368032754 40.69616708769403, -73.94226167920422 40.696175698798, -73.94217061244066 40.69618613693807, -73.94208643350876 40.69619578590027, -73.94198436724183 40.69620748536691, -73.94152445883948 40.6962601986313, -73.94070625153131 40.69635305387921, -73.94040726721202 40.69638987090211, -73.94020994337993 40.69641107787343, -73.94003822508267 40.69643083533578, -73.93976769964368 40.69646329104629, -73.93948446000253 40.69649454647407, -73.93917199789162 40.69653049512544, -73.93884866773332 40.69656769159932, -73.93867948785814 40.69658715370254, -73.93779110726068 40.69668934223279, -73.93763027449141 40.69595086258837, -73.93755700214285 40.69558451152044, -73.93748376644189 40.6952184321377, -73.9370544081801 40.69553123358047, -73.9348298043286 40.69575489184654, -73.9345601174396 40.69555483174558, -73.93463155014204 40.69592163383321, -73.93470512606679 40.69628830975414, -73.9347969968416 40.69673659235447, -73.93468892593663 40.69667495388458, -73.9346067517839 40.69662808583959, -73.93457999376531 40.69661282447046, -73.93448784825009 40.69656026847871, -73.93413397294013 40.69635843140355, -73.93382817155928 40.69618427730787, -73.93311862859143 40.69579115384632))'
school_table.WKT[0]
'POINT (-73.978747 40.722075)'
len(dist_table.school_dis.unique())
32
# aggregate districts
from shapely import wkt
import numpy as np
district_polygons = dist_table['geometry_object']
def get_district(geometry_wkt):
g = wkt.loads(geometry_wkt)
#flags = [x.contains(g) for x in district_polygons]
flags = [x.intersects(g) for x in district_polygons]
index = np.argmax(flags)
district = int(dist_table.iloc[index]['school_dis'])
return district
school_table['district'] = school_table['WKT'].apply(get_district)
len(school_table.district.unique())
32
len(dist_table)
33
mean_table = school_table.groupby('district').mean()
mean_table = mean_table.reset_index()
mean_table = mean_table[[
'district',
selected_attribute,
]]
mean_table
district | diversity_index | |
---|---|---|
0 | 1 | 74.392314 |
1 | 2 | 36.504481 |
2 | 3 | 45.148505 |
3 | 4 | 74.202823 |
4 | 5 | 74.205055 |
5 | 6 | 254.660597 |
6 | 7 | 129.066478 |
7 | 8 | 111.027489 |
8 | 9 | 171.782841 |
9 | 10 | 151.978352 |
10 | 11 | 54.424475 |
11 | 12 | 118.038638 |
12 | 13 | 51.905636 |
13 | 14 | 92.712426 |
14 | 15 | 80.325170 |
15 | 16 | 95.623066 |
16 | 17 | 73.062571 |
17 | 18 | 134.915158 |
18 | 19 | 73.366731 |
19 | 20 | 158.156244 |
20 | 21 | 59.592857 |
21 | 22 | 55.823892 |
22 | 23 | 92.098260 |
23 | 24 | 189.934931 |
24 | 25 | 65.688042 |
25 | 26 | 31.956221 |
26 | 27 | 34.876088 |
27 | 28 | 17.399788 |
28 | 29 | 61.776259 |
29 | 30 | 81.290729 |
30 | 31 | 57.090485 |
31 | 32 | 204.707566 |
dist_table.iloc[0]
school_dis 16 shape_area 4.67636e+07 shape_leng 35848.9 geometry_object POLYGON ((-73.93311862859143 40.69579115384632... geometry_layer geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b geometry_proj4 +proj=longlat +ellps=WGS84 +no_defs Name: 0, dtype: object
mean_table.iloc[0]
district 1.000000 diversity_index 74.392314 Name: 0, dtype: float64
t = pd.merge(dist_table, mean_table, left_on='school_dis', right_on='district')
map_table = t.copy()
map_table
school_dis | shape_area | shape_leng | geometry_object | geometry_layer | geometry_proj4 | district | diversity_index | |
---|---|---|---|---|---|---|---|---|
0 | 16.0 | 4.676362e+07 | 35848.904605 | POLYGON ((-73.93311862859143 40.69579115384632... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 16 | 95.623066 |
1 | 32.0 | 5.189850e+07 | 37251.057847 | POLYGON ((-73.91180710069435 40.70343495202662... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 32 | 204.707566 |
2 | 6.0 | 9.634170e+07 | 70447.849084 | POLYGON ((-73.92640556921116 40.87762147653734... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 6 | 254.660597 |
3 | 31.0 | 1.604472e+09 | 434471.412859 | (POLYGON ((-74.05050806403247 40.5664220341608... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 31 | 57.090485 |
4 | 7.0 | 9.226247e+07 | 65294.452403 | (POLYGON ((-73.89680883223774 40.7958084451597... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 7 | 129.066478 |
5 | 23.0 | 4.740069e+07 | 40317.452033 | (POLYGON ((-73.92044366203014 40.6656262871675... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 23 | 92.098260 |
6 | 29.0 | 4.201981e+08 | 135035.241651 | POLYGON ((-73.73816144093141 40.72895809117297... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 29 | 61.776259 |
7 | 26.0 | 4.247909e+08 | 125677.678898 | POLYGON ((-73.74344992332192 40.77824115291502... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 26 | 31.956221 |
8 | 15.0 | 1.961534e+08 | 153439.165680 | POLYGON ((-73.98633135042395 40.69105051012824... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 15 | 80.325170 |
9 | 17.0 | 1.284414e+08 | 68341.398899 | POLYGON ((-73.92044366203014 40.6656262871675,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 17 | 73.062571 |
10 | 19.0 | 2.034175e+08 | 184183.167312 | (POLYGON ((-73.846736514711 40.60485301485166,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 19 | 73.366731 |
11 | 13.0 | 1.048706e+08 | 86635.210559 | POLYGON ((-73.97906084911834 40.70594602894087... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 13 | 51.905636 |
12 | 18.0 | 1.751488e+08 | 121184.158477 | (POLYGON ((-73.86706149472118 40.5820879767934... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 18 | 134.915158 |
13 | 20.0 | 2.426965e+08 | 94309.778946 | POLYGON ((-74.02552971543656 40.65147855069281... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 20 | 158.156244 |
14 | 3.0 | 1.134889e+08 | 52072.051321 | POLYGON ((-73.95671863064405 40.78660079332199... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 3 | 45.148505 |
15 | 5.0 | 5.251977e+07 | 44469.588221 | POLYGON ((-73.93515659239551 40.83268240623763... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 5 | 74.205055 |
16 | 9.0 | 8.341539e+07 | 46648.958586 | POLYGON ((-73.9212971968614 40.85428933985649,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 9 | 171.782841 |
17 | 1.0 | 3.516075e+07 | 28641.276279 | POLYGON ((-73.97177410965313 40.72582128133706... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 1 | 74.392314 |
18 | 14.0 | 1.503102e+08 | 95792.082090 | POLYGON ((-73.95439555417087 40.73911477252251... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 14 | 92.712426 |
19 | 4.0 | 5.262043e+07 | 52061.828459 | (POLYGON ((-73.92133752419399 40.8008521064970... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 4 | 74.202823 |
20 | 10.0 | 2.825415e+08 | 94957.570434 | POLYGON ((-73.86789798628736 40.90294017690526... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 10 | 151.978352 |
21 | 10.0 | 3.282963e+06 | 7883.372664 | (POLYGON ((-73.9089323517538 40.8721573479701,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 10 | 151.978352 |
22 | 12.0 | 6.907182e+07 | 48527.595776 | POLYGON ((-73.88284445574813 40.84781722645163... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 12 | 118.038638 |
23 | 25.0 | 4.436285e+08 | 175827.007127 | POLYGON ((-73.82049919995312 40.80101146781899... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 25 | 65.688042 |
24 | 28.0 | 2.475679e+08 | 114694.912786 | POLYGON ((-73.84485477879177 40.7357514698091,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 28 | 17.399788 |
25 | 24.0 | 3.949782e+08 | 127343.703736 | (POLYGON ((-73.90641585511733 40.7398683641967... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 24 | 189.934931 |
26 | 30.0 | 3.181290e+08 | 150392.978241 | POLYGON ((-73.90647314610101 40.79018117520807... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 30 | 81.290729 |
27 | 21.0 | 2.101971e+08 | 123858.087345 | POLYGON ((-73.96184657346174 40.62757081710622... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 21 | 59.592857 |
28 | 22.0 | 3.855533e+08 | 271718.504936 | (POLYGON ((-73.91990064270161 40.5996005215871... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 22 | 55.823892 |
29 | 27.0 | 7.955970e+08 | 589135.490708 | (POLYGON ((-73.82784008953526 40.5887858248046... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 27 | 34.876088 |
30 | 11.0 | 3.926651e+08 | 305305.869806 | (POLYGON ((-73.78833349834532 40.8346671297593... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 11 | 54.424475 |
31 | 8.0 | 2.588266e+08 | 223080.044096 | (POLYGON ((-73.83979488562292 40.8356192069902... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 8 | 111.027489 |
32 | 2.0 | 2.804004e+08 | 212406.819436 | (POLYGON ((-74.0438776163991 40.69018767537123... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 2 | 36.504481 |
map_table['FillBlues'] = map_table[selected_attribute]
school_map_table = school_table.copy()
school_map_table['geometry_object'] = school_map_table.WKT.apply(wkt.loads)
district_map_table = t.copy()
district_map_table['FillBlues'] = district_map_table[selected_attribute]
school_map_table = school_table.copy()
#school_map_table['FillBlues'] = district_map_table['economic_need_index'].max()
map_table = pd.concat([
#district_map_table,
school_map_table,
], sort=False)
url = 'https://data.cityofnewyork.us/api/views/vh2h-md7a/rows.csv'
#school_graduation_table = pd.read_csv(url)
#len(school_graduation_table)
#school_graduation_table.iloc[0]
#school_graduation_table.groupby('DBN').mean()[:5]
#school_graduation_table = school_graduation_table[['DBN', 'School Name', 'Total Grads - % of cohort']].copy()
#len(school_graduation_table)
#school_graduation_table = school_graduation_table.dropna()
#sum(school_graduation_table['Total Grads - % of cohort'] == 's')
school_graduation_table = pd.read_csv(url, na_values=['s'])
school_graduation_table.loc[0]
Demographic Total Cohort DBN 01M292 School Name HENRY STREET SCHOOL FOR INTERNATIONAL Cohort 2003 Total Cohort 5 Total Grads - n NaN Total Grads - % of cohort NaN Total Regents - n NaN Total Regents - % of cohort NaN Total Regents - % of grads NaN Advanced Regents - n NaN Advanced Regents - % of cohort NaN Advanced Regents - % of grads NaN Regents w/o Advanced - n NaN Regents w/o Advanced - % of cohort NaN Regents w/o Advanced - % of grads NaN Local - n NaN Local - % of cohort NaN Local - % of grads NaN Still Enrolled - n NaN Still Enrolled - % of cohort NaN Dropped Out - n NaN Dropped Out - % of cohort NaN Name: 0, dtype: object
# Define which values mean null
school_graduation_table = school_graduation_table[['DBN', 'School Name', selected_outcome]].copy()
school_graduation_table = school_graduation_table.dropna()
len(school_graduation_table)
16704
school_graduation_table.dtypes
DBN object School Name object Total Grads - % of cohort float64 dtype: object
school_graduation_table
DBN | School Name | Total Grads - % of cohort | |
---|---|---|---|
1 | 01M292 | HENRY STREET SCHOOL FOR INTERNATIONAL | 67.3 |
2 | 01M292 | HENRY STREET SCHOOL FOR INTERNATIONAL | 67.2 |
3 | 01M292 | HENRY STREET SCHOOL FOR INTERNATIONAL | 55.1 |
4 | 01M292 | HENRY STREET SCHOOL FOR INTERNATIONAL | 56.4 |
5 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 71.9 |
6 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 63.5 |
7 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 77.0 |
8 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 67.0 |
9 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 52.9 |
10 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 42.7 |
11 | 01M448 | UNIVERSITY NEIGHBORHOOD HIGH SCHOOL | 48.4 |
12 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 67.2 |
13 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 62.5 |
14 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 62.0 |
15 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 72.5 |
16 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 71.8 |
17 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 77.8 |
18 | 01M450 | EAST SIDE COMMUNITY SCHOOL | 78.9 |
19 | 01M509 | MARTA VALLE HIGH SCHOOL | 49.3 |
20 | 01M509 | MARTA VALLE HIGH SCHOOL | 40.0 |
21 | 01M509 | MARTA VALLE HIGH SCHOOL | 44.3 |
22 | 01M509 | MARTA VALLE HIGH SCHOOL | 44.6 |
23 | 01M509 | MARTA VALLE HIGH SCHOOL | 55.7 |
24 | 01M509 | MARTA VALLE HIGH SCHOOL | 56.0 |
25 | 01M509 | MARTA VALLE HIGH SCHOOL | 59.5 |
26 | 01M515 | LOWER EAST SIDE PREPARATORY HIGH SCHO | 53.0 |
27 | 01M515 | LOWER EAST SIDE PREPARATORY HIGH SCHO | 44.8 |
28 | 01M515 | LOWER EAST SIDE PREPARATORY HIGH SCHO | 42.0 |
29 | 01M515 | LOWER EAST SIDE PREPARATORY HIGH SCHO | 48.5 |
30 | 01M515 | LOWER EAST SIDE PREPARATORY HIGH SCHO | 45.5 |
... | ... | ... | ... |
25060 | 32K545 | EBC HIGH SCHOOL FOR PUBLIC SERVICE?BU | 58.6 |
25061 | 32K545 | EBC HIGH SCHOOL FOR PUBLIC SERVICE?BU | 50.0 |
25062 | 32K545 | EBC HIGH SCHOOL FOR PUBLIC SERVICE?BU | 60.3 |
25063 | 32K545 | EBC HIGH SCHOOL FOR PUBLIC SERVICE?BU | 56.2 |
25064 | 32K545 | EBC HIGH SCHOOL FOR PUBLIC SERVICE?BU | 63.0 |
25066 | 32K549 | BUSHWICK SCHOOL FOR SOCIAL JUSTICE | 57.1 |
25067 | 32K549 | BUSHWICK SCHOOL FOR SOCIAL JUSTICE | 70.4 |
25068 | 32K549 | BUSHWICK SCHOOL FOR SOCIAL JUSTICE | 69.4 |
25069 | 32K549 | BUSHWICK SCHOOL FOR SOCIAL JUSTICE | 71.1 |
25070 | 32K549 | BUSHWICK SCHOOL FOR SOCIAL JUSTICE | 71.1 |
25072 | 32K552 | ACADEMY OF URBAN PLANNING | 49.2 |
25073 | 32K552 | ACADEMY OF URBAN PLANNING | 53.2 |
25074 | 32K552 | ACADEMY OF URBAN PLANNING | 52.8 |
25075 | 32K552 | ACADEMY OF URBAN PLANNING | 42.0 |
25076 | 32K552 | ACADEMY OF URBAN PLANNING | 54.0 |
25080 | 32K554 | ALL CITY LEADERSHIP SECONDARY SCHOOL | 69.6 |
25081 | 32K554 | ALL CITY LEADERSHIP SECONDARY SCHOOL | 87.5 |
25082 | 32K554 | ALL CITY LEADERSHIP SECONDARY SCHOOL | 91.7 |
25084 | 32K556 | BUSHWICK LEADERS HIGH SCHOOL FOR ACAD | 63.8 |
25085 | 32K556 | BUSHWICK LEADERS HIGH SCHOOL FOR ACAD | 64.7 |
25086 | 32K556 | BUSHWICK LEADERS HIGH SCHOOL FOR ACAD | 62.5 |
25087 | 32K556 | BUSHWICK LEADERS HIGH SCHOOL FOR ACAD | 49.0 |
25088 | 32K556 | BUSHWICK LEADERS HIGH SCHOOL FOR ACAD | 51.0 |
25089 | 32K564 | BUSHWICK COMMUNITY HIGH SCHOOL | 2.9 |
25090 | 32K564 | BUSHWICK COMMUNITY HIGH SCHOOL | 5.5 |
25091 | 32K564 | BUSHWICK COMMUNITY HIGH SCHOOL | 1.5 |
25092 | 32K564 | BUSHWICK COMMUNITY HIGH SCHOOL | 3.1 |
25093 | 32K564 | BUSHWICK COMMUNITY HIGH SCHOOL | 3.8 |
25094 | 32K564 | BUSHWICK COMMUNITY HIGH SCHOOL | 7.0 |
25095 | 32K564 | BUSHWICK COMMUNITY HIGH SCHOOL | 7.0 |
school_graduation_table = school_graduation_table.groupby('DBN').mean()
school_graduation_table[:5]
Total Grads - % of cohort | |
---|---|
DBN | |
01M292 | 61.755556 |
01M448 | 58.637736 |
01M450 | 70.462500 |
01M509 | 49.902381 |
01M515 | 49.151064 |
endpoint_url = 'https://data.cityofnewyork.us/resource/r2nx-nhxe.csv'
# Load schools
school_location_table = load(
endpoint_url,
buffer_size=1000)
school_location_table[:5]
https://data.cityofnewyork.us/resource/r2nx-nhxe.csv?$limit=1000 1000 1823
:@computed_region_92fq_4b7q | :@computed_region_efsh_h5xi | :@computed_region_f5dn_yrer | :@computed_region_sbqj_enih | :@computed_region_yeji_bk3q | admin_district_location_code | administrative_district_name | ats_system_code | beds_number | borough_block_lot | ... | primary_building_code | principal_name | principal_phone_number | principal_title | school_support_team_leader_name | school_support_team_name | state_code | status_descriptions | x_coordinate | y_coordinate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 50.0 | 11729.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M015 | 310100010015 | 1003740020 | ... | M015 | IRENE SANCHEZ | 212-228-8730 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 990141.0 | 202349.0 |
1 | 50.0 | 11724.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M019 | 310100010019 | 1004530034 | ... | M019 | JACQUELINE FLANAGAN | 212-533-5340 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 988547.0 | 205239.0 |
2 | 32.0 | 11723.0 | 70.0 | 4.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M020 | 310100010020 | 1003550001 | ... | M020 | SARAH PINTO VIAGRAN | 212-254-9577 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 988044.0 | 202068.0 |
3 | 50.0 | 11729.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M034 | 310100010034 | 1003810038 | ... | M034 | ANGELIKI LOUKATOS | 212-228-4433 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 991163.0 | 203782.0 |
4 | 50.0 | 11729.0 | 70.0 | 5.0 | 4.0 | M801 | COMMUNITY SCHOOL DISTRICT 01 | 01M063 | 310100010063 | 1004310014 | ... | M063 | DARLENE CAMERON | 212-674-3180 | PRINCIPAL | NaN | School Support Team 3- Manhattan | NY | Open | 988071.0 | 203210.0 |
school_location_table.iloc[0]
:@computed_region_92fq_4b7q 50 :@computed_region_efsh_h5xi 11729 :@computed_region_f5dn_yrer 70 :@computed_region_sbqj_enih 5 :@computed_region_yeji_bk3q 4 admin_district_location_code M801 administrative_district_name COMMUNITY SCHOOL DISTRICT 01 ats_system_code 01M015 beds_number 310100010015 borough_block_lot 1003740020 census_tract 2601 community_district 103 community_school_sup_name PHILLIPS, DANIELLA council_district 2 fax_number 212-477-0931 field_support_center_leader_name CHU, YUET field_support_center_name Field Support Center - Manhattan fiscal_year 2018 geographical_district_code 1 grades_final_text PK,0K,01,02,03,04,05 grades_text PK,0K,01,02,03,04,05,SE highschool_network_location_code NaN highschool_network_name NaN highschool_network_superintendent NaN location_1 POINT (-73.978747 40.722075) location_1_address 333 EAST 4 STREET location_1_city MANHATTAN location_1_state NY location_1_zip 10009 location_category_description Elementary location_code M015 location_name P.S. 015 Roberto Clemente location_type_description General Academic managed_by_name DOE nta MN28 nta_name Lower East Side ... open_date 1904-07-01T00:00:00.000 primary_address_line_1 333 EAST 4 STREET primary_building_code M015 principal_name IRENE SANCHEZ principal_phone_number 212-228-8730 principal_title PRINCIPAL school_support_team_leader_name NaN school_support_team_name School Support Team 3- Manhattan state_code NY status_descriptions Open x_coordinate 990141 y_coordinate 202349 Name: 0, dtype: object
school_location_table.iloc[0]['location_1']
'POINT (-73.978747 40.722075)'
school_location_table.iloc[0]['ats_system_code']
'01M015 '
school_location_table['DBN'] = school_location_table['ats_system_code'].str.strip()
school_location_table.iloc[0]['DBN']
'01M015'
school_location_table = school_location_table.rename(columns={
'location_1': 'WKT',
'location_name': 'School Name',
})
trimmed_school_location_table = school_location_table[[
'DBN',
'WKT',
'School Name',
]]
merged_school_table = pd.merge(
school_table,
school_graduation_table,
left_on='DBN',
right_on='DBN')
len(school_table)
1801
merged_school_table.iloc[0]
DBN 01M292 WKT POINT (-73.986051 40.713362) School Name Orchard Collegiate Academy asian_1 21 asian_2 15 black_1 34 black_2 24.3 dbn 01M292 economic_need_index 84.4% english_language_learners_1 20 english_language_learners_2 14.3 female_1 53 female_2 37.9 grade_1 0 grade_10 35 grade_11 31 grade_12 34 grade_2 0 grade_3 0 grade_4 0 grade_5 0 grade_6 0 grade_7 0 grade_8 0 grade_9 40 grade_k 0 grade_pk_half_day_full_day 0 hispanic_1 77 hispanic_2 55 male_1 87 male_2 62.1 multiple_race_categories_not_represented_1 1 multiple_race_categories_not_represented_2 0.7 poverty_1 128 poverty_2 91.4 school_name Orchard Collegiate Academy students_with_disabilities_1 38 students_with_disabilities_2 27.1 total_enrollment 140 white_1 7 white_2 5 year 2016-17 diversity_index 86.2143 scaled_index 0.00561885 district 1 Total Grads - % of cohort 61.7556 Name: 0, dtype: object
sorted_school_table = merged_school_table.sort_values(selected_outcome, ascending=False)
sorted_school_table[-10:]
DBN | WKT | School Name | asian_1 | asian_2 | black_1 | black_2 | dbn | economic_need_index | english_language_learners_1 | ... | students_with_disabilities_1 | students_with_disabilities_2 | total_enrollment | white_1 | white_2 | year | diversity_index | scaled_index | district | Total Grads - % of cohort | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
89 | 07X379 | POINT (-73.905389 40.818703) | Jill Chaifetz Transfer High School | 3 | 1.4 | 74 | 34.3 | 07X379 | 80.6% | 21 | ... | 56 | 25.9 | 216 | 1 | 0.5 | 2016-17 | 67.785714 | 0.009317 | 7 | 12.929167 |
104 | 08X377 | POINT (-73.85593 40.821218) | Bronx Community High School | 5 | 2.8 | 62 | 34.4 | 08X377 | 75.1% | 6 | ... | 30 | 16.7 | 180 | 3 | 1.7 | 2016-17 | 81.727273 | NaN | 8 | 10.683333 |
252 | 23K646 | POINT (-73.904143 40.677528) | Aspirations Diploma Plus High School | 3 | 1.3 | 178 | 75.4 | 23K646 | 69.0% | 7 | ... | 43 | 18.2 | 236 | 1 | 0.4 | 2016-17 | 48.500000 | NaN | 23 | 10.335000 |
90 | 07X381 | POINT (-73.919949 40.818645) | Bronx Haven High School | 3 | 1.6 | 62 | 32.3 | 07X381 | 78.8% | 10 | ... | 46 | 24.0 | 192 | 1 | 0.5 | 2016-17 | 95.800000 | 0.015825 | 7 | 9.500000 |
184 | 24Q744 | POINT (-73.871505 40.743228) | VOYAGES Preparatory | 23 | 9.2 | 47 | 18.7 | 24Q744 | 48.7% | 3 | ... | 15 | 6.0 | 251 | 12 | 4.8 | 2016-17 | 210.000000 | NaN | 24 | 9.200000 |
220 | 17K568 | POINT (-73.923881 40.666251) | Brownsville Academy High School | 1 | 0.6 | 133 | 85.8 | 17K568 | 67.0% | 3 | ... | 36 | 23.2 | 155 | 0 | 0.0 | 2016-17 | 31.679487 | NaN | 17 | 8.907143 |
76 | 05M285 | POINT (-73.939974 40.807692) | Harlem Renaissance High School | 7 | 3.0 | 99 | 42.9 | 05M285 | 77.4% | 31 | ... | 52 | 22.5 | 231 | 3 | 1.3 | 2016-17 | 100.555556 | 0.043929 | 5 | 7.521429 |
224 | 18K673 | POINT (-73.920658 40.659914) | East Brooklyn Community High School | 0 | 0.0 | 162 | 83.9 | 18K673 | 67.2% | 12 | ... | 67 | 34.7 | 193 | 4 | 2.1 | 2016-17 | 118.300000 | NaN | 18 | 5.441667 |
322 | 32K564 | POINT (-73.915217 40.695875) | Bushwick Community High School | 0 | 0.0 | 67 | 28.4 | 32K564 | 71.0% | 10 | ... | 56 | 23.7 | 236 | 7 | 3.0 | 2016-17 | 234.000000 | NaN | 32 | 5.337500 |
182 | 13K616 | POINT (-73.95818 40.692015) | Brooklyn High School for Leadership and Community | 1 | 0.5 | 141 | 69.5 | 13K616 | 70.6% | 9 | ... | 38 | 18.7 | 203 | 5 | 2.5 | 2016-17 | 187.200000 | NaN | 13 | 5.322222 |
sorted_school_table[-3:]
DBN | WKT | School Name | asian_1 | asian_2 | black_1 | black_2 | dbn | economic_need_index | english_language_learners_1 | ... | students_with_disabilities_1 | students_with_disabilities_2 | total_enrollment | white_1 | white_2 | year | diversity_index | scaled_index | district | Total Grads - % of cohort | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
224 | 18K673 | POINT (-73.920658 40.659914) | East Brooklyn Community High School | 0 | 0.0 | 162 | 83.9 | 18K673 | 67.2% | 12 | ... | 67 | 34.7 | 193 | 4 | 2.1 | 2016-17 | 118.3 | NaN | 18 | 5.441667 |
322 | 32K564 | POINT (-73.915217 40.695875) | Bushwick Community High School | 0 | 0.0 | 67 | 28.4 | 32K564 | 71.0% | 10 | ... | 56 | 23.7 | 236 | 7 | 3.0 | 2016-17 | 234.0 | NaN | 32 | 5.337500 |
182 | 13K616 | POINT (-73.95818 40.692015) | Brooklyn High School for Leadership and Community | 1 | 0.5 | 141 | 69.5 | 13K616 | 70.6% | 9 | ... | 38 | 18.7 | 203 | 5 | 2.5 | 2016-17 | 187.2 | NaN | 13 | 5.322222 |
school_table.iloc[0]
DBN 01M015 WKT POINT (-73.978747 40.722075) School Name P.S. 015 Roberto Clemente asian_1 14 asian_2 7.9 black_1 51 black_2 28.7 dbn 01M015 economic_need_index 89.2% english_language_learners_1 12 english_language_learners_2 6.7 female_1 83 female_2 46.6 grade_1 33 grade_10 0 grade_11 0 grade_12 0 grade_2 27 grade_3 31 grade_4 24 grade_5 18 grade_6 0 grade_7 0 grade_8 0 grade_9 0 grade_k 28 grade_pk_half_day_full_day 17 hispanic_1 105 hispanic_2 59 male_1 95 male_2 53.4 multiple_race_categories_not_represented_1 4 multiple_race_categories_not_represented_2 2.2 poverty_1 152 poverty_2 85.4 school_name P.S. 015 Roberto Clemente students_with_disabilities_1 51 students_with_disabilities_2 28.7 total_enrollment 178 white_1 4 white_2 2.2 year 2016-17 diversity_index 35.2727 scaled_index 0.096328 district 1 Name: 0, dtype: object
len(district_map_table)
33
district_map_table = t.copy()
district_map_table['WKT'] = district_map_table['geometry_object'].apply(
lambda x: x.wkt)
# Define FillColor
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(1, 100))
array = district_map_table['diversity_index'].values.reshape(-1, 1)
scaler.fit(array)
district_map_table['scaled_index'] = scaler.transform(array)
from sklearn import preprocessing
import pandas as pd
x = sorted_school_table['diversity_index'].values.reshape(-1,1) #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
sorted_school_table['scaled_index'] = pd.DataFrame(x_scaled)
# x = district_map_table['diversity_index'].values.reshape(-1,1) #returns a numpy array
# min_max_scaler = preprocessing.MinMaxScaler()
# x_scaled = min_max_scaler.fit_transform(x)
# district_map_table['scaled_index'] = pd.DataFrame(x_scaled)
sorted_school_table.scaled_index.describe()
count 323.000000 mean 0.081404 std 0.100232 min 0.000000 25% 0.026000 50% 0.054133 75% 0.096842 max 1.000000 Name: scaled_index, dtype: float64
# getting top and bottom performing schools
a_school_map_table = sorted_school_table[:10].copy()
a_school_map_table = a_school_map_table[['WKT', 'School Name','total_enrollment']]
a_school_map_table = a_school_map_table.rename({
'School Name': 'Name',
})
a_school_map_table['FillColor'] = 'g'
len(sorted_school_table)
323
sorted_school_table.drop(sorted_school_table.tail(1).index,inplace=True)
sorted_school_table.isna().sum()
DBN 0 WKT 0 School Name 0 asian_1 0 asian_2 0 black_1 0 black_2 0 dbn 0 economic_need_index 0 english_language_learners_1 0 english_language_learners_2 0 female_1 0 female_2 0 grade_1 0 grade_10 0 grade_11 0 grade_12 0 grade_2 0 grade_3 0 grade_4 0 grade_5 0 grade_6 0 grade_7 0 grade_8 0 grade_9 0 grade_k 0 grade_pk_half_day_full_day 0 hispanic_1 0 hispanic_2 0 male_1 0 male_2 0 multiple_race_categories_not_represented_1 0 multiple_race_categories_not_represented_2 0 poverty_1 0 poverty_2 0 school_name 0 students_with_disabilities_1 0 students_with_disabilities_2 0 total_enrollment 0 white_1 0 white_2 0 year 0 diversity_index 0 scaled_index 0 district 0 Total Grads - % of cohort 0 dtype: int64
sorted_school_table['School Name'].nunique()
322
sorted_school_table[30:]
DBN | WKT | School Name | asian_1 | asian_2 | black_1 | black_2 | dbn | economic_need_index | english_language_learners_1 | ... | students_with_disabilities_1 | students_with_disabilities_2 | total_enrollment | white_1 | white_2 | year | diversity_index | scaled_index | district | Total Grads - % of cohort | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
173 | 13K430 | POINT (-73.976435 40.688896) | Brooklyn Technical High School | 3483 | 61.3 | 391 | 6.9 | 13K430 | 41.8% | 0 | ... | 94 | 1.7 | 5682 | 1243 | 21.9 | 2016-17 | 27.388889 | 0.017592 | 13 | 91.419048 |
32 | 02M439 | POINT (-73.991966 40.741963) | Manhattan Village Academy | 31 | 7.2 | 49 | 11.3 | 02M439 | 63.0% | 7 | ... | 65 | 15.0 | 432 | 34 | 7.9 | 2016-17 | 5.492806 | 0.013822 | 2 | 91.339130 |
248 | 22K555 | POINT (-73.972312 40.649055) | Brooklyn College Academy | 51 | 8.3 | 422 | 68.3 | 22K555 | 45.9% | 1 | ... | 58 | 9.4 | 618 | 37 | 6.0 | 2016-17 | 13.621212 | 0.043673 | 15 | 91.128571 |
63 | 03M479 | POINT (-73.996262 40.760858) | Beacon High School | 105 | 8.1 | 177 | 13.6 | 03M479 | 26.3% | 3 | ... | 103 | 7.9 | 1304 | 670 | 51.4 | 2016-17 | 7.922535 | 0.008051 | 2 | 90.550877 |
285 | 27Q650 | POINT (-73.841475 40.689177) | High School for Construction Trades, Engineeri... | 320 | 31.5 | 98 | 9.7 | 27Q650 | 42.8% | 15 | ... | 142 | 14.0 | 1015 | 135 | 13.3 | 2016-17 | 3.736842 | 0.047347 | 27 | 90.462500 |
255 | 24Q264 | POINT (-73.937004 40.744175) | Academy of Finance and Enterprise | 129 | 22.8 | 31 | 5.5 | 24Q264 | 55.1% | 35 | ... | 70 | 12.3 | 567 | 93 | 16.4 | 2016-17 | 21.807692 | 0.050496 | 24 | 89.683333 |
268 | 25Q285 | POINT (-73.789365 40.764884) | World Journalism Preparatory: A College Board ... | 94 | 16.6 | 25 | 4.4 | 25Q285 | 31.7% | 3 | ... | 118 | 20.8 | 566 | 264 | 46.6 | 2016-17 | 63.333333 | 0.426327 | 25 | 89.025000 |
143 | 10X477 | POINT (-73.912686 40.877379) | Marble Hill High School for International Studies | 41 | 9.6 | 93 | 21.7 | 10X477 | 80.1% | 127 | ... | 49 | 11.4 | 429 | 22 | 5.1 | 2016-17 | 153.100000 | 0.037453 | 10 | 88.993023 |
38 | 02M519 | POINT (-73.959777 40.765638) | Talent Unlimited High School | 20 | 4.0 | 163 | 32.9 | 02M519 | 44.8% | 2 | ... | 74 | 14.9 | 495 | 78 | 15.8 | 2016-17 | 8.292308 | 0.007297 | 2 | 88.825000 |
26 | 02M414 | POINT (-74.002222 40.742512) | N.Y.C. Museum School | 135 | 29.7 | 59 | 13.0 | 02M414 | 55.6% | 6 | ... | 48 | 10.6 | 454 | 73 | 16.1 | 2016-17 | 8.086957 | 0.010869 | 2 | 88.683721 |
221 | 17K590 | POINT (-73.951823 40.66679) | Medgar Evers College Preparatory School | 35 | 2.8 | 1104 | 88.2 | 17K590 | 46.3% | 5 | ... | 80 | 6.4 | 1252 | 8 | 0.6 | 2016-17 | 36.614286 | 0.047102 | 17 | 88.546512 |
45 | 02M545 | POINT (-73.989329 40.717329) | High School for Dual Language and Asian Studies | 335 | 84.4 | 17 | 4.3 | 02M545 | 67.8% | 47 | ... | 11 | 2.8 | 397 | 14 | 3.5 | 2016-17 | 79.700000 | 0.026266 | 2 | 87.876471 |
159 | 11X542 | POINT (-73.860729 40.860443) | Pelham Preparatory Academy | 29 | 5.9 | 149 | 30.2 | 11X542 | 61.3% | 19 | ... | 103 | 20.9 | 493 | 47 | 9.5 | 2016-17 | 23.678571 | 0.047720 | 11 | 86.530952 |
113 | 09X260 | POINT (-73.902794 40.833884) | Bronx Center for Science and Mathematics | 32 | 7.0 | 98 | 21.4 | 09X260 | 76.8% | 27 | ... | 105 | 22.9 | 458 | 7 | 1.5 | 2016-17 | 98.722222 | 0.143469 | 9 | 86.523810 |
267 | 25Q281 | POINT (-73.821402 40.74943) | East-West School of International Studies | 451 | 65.8 | 67 | 9.8 | 25Q281 | 47.3% | 45 | ... | 82 | 12.0 | 685 | 34 | 5.0 | 2016-17 | 51.500000 | 0.298061 | 25 | 86.116667 |
175 | 13K483 | POINT (-73.988323 40.694629) | The Urban Assembly School for Law and Justice | 12 | 2.6 | 313 | 68.0 | 13K483 | 56.6% | 8 | ... | 76 | 16.5 | 460 | 7 | 1.5 | 2016-17 | 23.783784 | 0.118868 | 13 | 85.511111 |
247 | 22K535 | POINT (-73.934449 40.578356) | Leon M. Goldstein High School for the Sciences | 243 | 23.6 | 101 | 9.8 | 22K535 | 35.0% | 7 | ... | 163 | 15.8 | 1029 | 576 | 56.0 | 2016-17 | 52.166667 | 0.016808 | 22 | 85.468519 |
208 | 17K382 | POINT (-73.957173 40.649602) | Academy for College Preparation and Career Exp... | 8 | 1.9 | 323 | 78.4 | 17K382 | 69.5% | 39 | ... | 69 | 16.7 | 412 | 7 | 1.7 | 2016-17 | 24.772727 | 0.026482 | 17 | 85.358333 |
320 | 32K554 | POINT (-73.913172 40.697378) | All City Leadership Secondary School | 25 | 6.1 | 42 | 10.2 | 32K554 | 59.6% | 7 | ... | 33 | 8.0 | 413 | 29 | 7.0 | 2016-17 | 205.500000 | 0.142000 | 32 | 85.145161 |
12 | 02M298 | POINT (-73.993607 40.716231) | Pace High School | 43 | 8.5 | 162 | 31.9 | 02M298 | 66.3% | 12 | ... | 98 | 19.3 | 508 | 13 | 2.6 | 2016-17 | 16.311111 | 0.001725 | 2 | 85.086207 |
304 | 30Q575 | POINT (-73.937564 40.751144) | Academy of American Studies | 294 | 29.4 | 64 | 6.4 | 30Q575 | 40.4% | 40 | ... | 84 | 8.4 | 999 | 312 | 31.2 | 2016-17 | 92.250000 | 0.017824 | 30 | 84.996825 |
197 | 15K448 | POINT (-74.002022 40.679462) | Brooklyn Secondary School for Collaborative St... | 20 | 3.0 | 253 | 37.9 | 15K448 | 61.2% | 45 | ... | 214 | 32.1 | 667 | 71 | 10.6 | 2016-17 | 33.619048 | 0.120544 | 15 | 84.621739 |
151 | 11X275 | POINT (-73.861649 40.875172) | High School of Computers and Technology | 33 | 6.3 | 180 | 34.3 | 11X275 | 73.5% | 35 | ... | 136 | 25.9 | 525 | 10 | 1.9 | 2016-17 | 43.000000 | 0.036644 | 11 | 84.244000 |
112 | 09X252 | POINT (-73.901774 40.839508) | Mott Hall Bronx High School | 3 | 0.8 | 81 | 20.8 | 09X252 | 84.0% | 51 | ... | 95 | 24.4 | 390 | 4 | 1.0 | 2016-17 | 48.452381 | 0.027449 | 9 | 84.209524 |
96 | 07X548 | POINT (-73.922366 40.821828) | Careers in Sports High School | 4 | 0.7 | 168 | 30.0 | 07X548 | 83.0% | 57 | ... | 137 | 24.5 | 560 | 10 | 1.8 | 2016-17 | 95.000000 | 0.010853 | 7 | 83.679070 |
125 | 10X141 | POINT (-73.914141 40.887407) | Riverdale / Kingsbridge Academy (Middle School... | 126 | 8.6 | 137 | 9.4 | 10X141 | 40.0% | 113 | ... | 281 | 19.3 | 1459 | 388 | 26.6 | 2016-17 | 79.000000 | 0.092347 | 10 | 83.616667 |
191 | 14K488 | POINT (-73.954815 40.715561) | Brooklyn Preparatory High School | 11 | 2.1 | 264 | 50.2 | 14K488 | 64.3% | 11 | ... | 87 | 16.5 | 526 | 7 | 1.3 | 2016-17 | 53.823529 | 0.091254 | 14 | 83.595833 |
128 | 10X237 | POINT (-73.901565 40.875636) | The Marie Curie School for Medicine, Nursing, and | 17 | 3.2 | 175 | 32.8 | 10X237 | 76.3% | 67 | ... | 109 | 20.5 | 533 | 15 | 2.8 | 2016-17 | 35.625000 | 0.024320 | 10 | 83.466667 |
88 | 07X221 | POINT (-73.920851 40.813612) | South Bronx Preparatory: A College Board School | 12 | 1.8 | 153 | 23.3 | 07X221 | 86.2% | 40 | ... | 166 | 25.3 | 657 | 11 | 1.7 | 2016-17 | 86.136364 | 0.057254 | 7 | 83.400000 |
193 | 14K561 | POINT (-73.954815 40.715561) | Williamsburg Preparatory School | 17 | 2.5 | 116 | 16.9 | 14K561 | 66.6% | 23 | ... | 123 | 17.9 | 686 | 65 | 9.5 | 2016-17 | 130.214286 | 0.017880 | 14 | 83.339286 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
206 | 16K455 | POINT (-73.931604 40.678478) | Boys and Girls High School | 7 | 1.8 | 333 | 84.1 | 16K455 | 78.7% | 20 | ... | 115 | 29.0 | 396 | 8 | 2.0 | 2016-17 | 51.891304 | 0.078995 | 16 | 36.258621 |
179 | 13K575 | POINT (-73.947873 40.684654) | Bedford Stuyvesant Preparatory High School | 0 | 0.0 | 100 | 82.0 | 13K575 | 70.4% | 4 | ... | 8 | 6.6 | 122 | 1 | 0.8 | 2016-17 | 71.750000 | 0.073388 | 13 | 33.620000 |
132 | 10X319 | POINT (-73.893744 40.848385) | Providing Urban Learners Success In Education ... | 1 | 0.4 | 27 | 11.4 | 10X319 | 78.6% | 16 | ... | 41 | 17.4 | 236 | 1 | 0.4 | 2016-17 | 2.728956 | 0.121061 | 10 | 27.394595 |
61 | 03M404 | POINT (-73.974483 40.786134) | Innovation Diploma Plus | 1 | 0.6 | 61 | 35.1 | 03M404 | 75.2% | 1 | ... | 24 | 13.8 | 174 | 0 | 0.0 | 2016-17 | 57.117647 | 0.015560 | 3 | 27.300000 |
53 | 02M586 | POINT (-73.992343 40.729661) | Harvey Milk High School | 2 | 2.7 | 22 | 29.7 | 02M586 | 72.6% | 3 | ... | 30 | 40.5 | 74 | 6 | 8.1 | 2016-17 | 55.000000 | 0.056472 | 2 | 26.966667 |
313 | 31R470 | POINT (-74.087072 40.61062) | Concord High School | 3 | 1.6 | 53 | 29.1 | 31R470 | 66.6% | 2 | ... | 51 | 28.0 | 182 | 34 | 18.7 | 2016-17 | 20.962963 | 0.080146 | 31 | 25.826531 |
244 | 21K728 | POINT (-73.985413 40.576976) | Liberation Diploma Plus | 5 | 2.4 | 115 | 55.8 | 21K728 | 72.1% | 2 | ... | 47 | 22.8 | 206 | 23 | 11.2 | 2016-17 | 144.600000 | 0.159650 | 21 | 24.841667 |
253 | 23K647 | POINT (-73.906662 40.655644) | Metropolitan Diploma Plus High School | 0 | 0.0 | 179 | 84.8 | 23K647 | 74.4% | 2 | ... | 53 | 25.1 | 211 | 1 | 0.5 | 2016-17 | 50.333333 | 0.094768 | 23 | 20.283333 |
165 | 12X480 | POINT (-73.898265 40.823124) | Bronx Regional High School | 2 | 0.8 | 84 | 35.4 | 12X480 | 77.4% | 27 | ... | 37 | 15.6 | 237 | 5 | 2.1 | 2016-17 | 94.100000 | 0.059088 | 12 | 20.256000 |
251 | 23K643 | POINT (-73.906662 40.655644) | Brooklyn Democracy Academy | 2 | 1.0 | 167 | 80.3 | 23K643 | 71.9% | 8 | ... | 47 | 22.6 | 208 | 1 | 0.5 | 2016-17 | 46.541667 | 0.094286 | 23 | 19.838889 |
67 | 03M505 | POINT (-73.966779 40.797136) | Edward A. Reynolds West Side High School | 3 | 0.6 | 112 | 22.8 | 03M505 | 70.4% | 43 | ... | 161 | 32.7 | 492 | 18 | 3.7 | 2016-17 | 158.333333 | 0.034122 | 3 | 19.649153 |
272 | 25Q540 | POINT (-73.828279 40.765624) | Queens Academy High School | 42 | 9.7 | 168 | 38.6 | 25Q540 | 49.1% | 14 | ... | 79 | 18.2 | 435 | 24 | 5.5 | 2016-17 | 17.810811 | 0.067184 | 25 | 17.066667 |
178 | 13K553 | POINT (-73.947873 40.684654) | Brooklyn Academy High School | 0 | 0.0 | 99 | 73.3 | 13K553 | 69.5% | 0 | ... | 37 | 27.4 | 135 | 1 | 0.7 | 2016-17 | 16.889831 | 0.081429 | 13 | 15.860465 |
210 | 17K489 | POINT (-73.955188 40.669561) | W.E.B. Dubois Academic High School | 2 | 1.9 | 87 | 82.9 | 17K489 | 60.8% | 1 | ... | 17 | 16.2 | 105 | 1 | 1.0 | 2016-17 | 61.394737 | 0.122408 | 17 | 15.650000 |
50 | 02M570 | POINT (-73.990562 40.747425) | Satellite Academy High School | 2 | 0.7 | 101 | 36.1 | 02M570 | 70.4% | 15 | ... | 53 | 18.9 | 280 | 8 | 2.9 | 2016-17 | 131.571429 | 0.110102 | 2 | 15.410345 |
44 | 02M544 | POINT (-73.98861 40.767848) | Independence High School | 9 | 2.7 | 122 | 36.1 | 02M544 | 70.4% | 22 | ... | 44 | 13.0 | 338 | 23 | 6.8 | 2016-17 | 32.791667 | 0.060204 | 2 | 15.380000 |
274 | 25Q792 | POINT (-73.819664 40.720586) | North Queens Community High School | 26 | 11.9 | 90 | 41.3 | 25Q792 | 47.4% | 10 | ... | 47 | 21.6 | 218 | 19 | 8.7 | 2016-17 | 14.891892 | 0.362041 | 25 | 14.464286 |
222 | 18K578 | POINT (-73.916927 40.634451) | Brooklyn Bridge Academy | 1 | 0.5 | 169 | 84.5 | 18K578 | 64.0% | 8 | ... | 43 | 21.5 | 200 | 5 | 2.5 | 2016-17 | 60.000000 | 0.021287 | 18 | 14.378261 |
223 | 18K635 | POINT (-73.886499 40.652203) | Olympus Academy | 0 | 0.0 | 206 | 91.2 | 18K635 | 55.7% | 4 | ... | 47 | 20.8 | 226 | 3 | 1.3 | 2016-17 | 49.500000 | 0.225510 | 19 | 13.538889 |
205 | 15K698 | POINT (-74.014363 40.677968) | South Brooklyn Community High School | 7 | 3.5 | 61 | 30.3 | 15K698 | 73.3% | 8 | ... | 53 | 26.4 | 201 | 11 | 5.5 | 2016-17 | 19.500000 | 0.092959 | 15 | 13.478571 |
203 | 15K529 | POINT (-73.992151 40.642619) | West Brooklyn Community High School | 15 | 7.0 | 23 | 10.7 | 15K529 | 65.9% | 11 | ... | 72 | 33.6 | 214 | 27 | 12.6 | 2016-17 | 97.722222 | 0.117143 | 15 | 12.954839 |
89 | 07X379 | POINT (-73.905389 40.818703) | Jill Chaifetz Transfer High School | 3 | 1.4 | 74 | 34.3 | 07X379 | 80.6% | 21 | ... | 56 | 25.9 | 216 | 1 | 0.5 | 2016-17 | 67.785714 | 0.075510 | 7 | 12.929167 |
104 | 08X377 | POINT (-73.85593 40.821218) | Bronx Community High School | 5 | 2.8 | 62 | 34.4 | 08X377 | 75.1% | 6 | ... | 30 | 16.7 | 180 | 3 | 1.7 | 2016-17 | 81.727273 | 0.023994 | 8 | 10.683333 |
252 | 23K646 | POINT (-73.904143 40.677528) | Aspirations Diploma Plus High School | 3 | 1.3 | 178 | 75.4 | 23K646 | 69.0% | 7 | ... | 43 | 18.2 | 236 | 1 | 0.4 | 2016-17 | 48.500000 | 0.029967 | 23 | 10.335000 |
90 | 07X381 | POINT (-73.919949 40.818645) | Bronx Haven High School | 3 | 1.6 | 62 | 32.3 | 07X381 | 78.8% | 10 | ... | 46 | 24.0 | 192 | 1 | 0.5 | 2016-17 | 95.800000 | 0.041985 | 7 | 9.500000 |
184 | 24Q744 | POINT (-73.871505 40.743228) | VOYAGES Preparatory | 23 | 9.2 | 47 | 18.7 | 24Q744 | 48.7% | 3 | ... | 15 | 6.0 | 251 | 12 | 4.8 | 2016-17 | 210.000000 | 0.035667 | 24 | 9.200000 |
220 | 17K568 | POINT (-73.923881 40.666251) | Brownsville Academy High School | 1 | 0.6 | 133 | 85.8 | 17K568 | 67.0% | 3 | ... | 36 | 23.2 | 155 | 0 | 0.0 | 2016-17 | 31.679487 | 0.372449 | 17 | 8.907143 |
76 | 05M285 | POINT (-73.939974 40.807692) | Harlem Renaissance High School | 7 | 3.0 | 99 | 42.9 | 05M285 | 77.4% | 31 | ... | 52 | 22.5 | 231 | 3 | 1.3 | 2016-17 | 100.555556 | 0.055118 | 5 | 7.521429 |
224 | 18K673 | POINT (-73.920658 40.659914) | East Brooklyn Community High School | 0 | 0.0 | 162 | 83.9 | 18K673 | 67.2% | 12 | ... | 67 | 34.7 | 193 | 4 | 2.1 | 2016-17 | 118.300000 | 0.030082 | 18 | 5.441667 |
322 | 32K564 | POINT (-73.915217 40.695875) | Bushwick Community High School | 0 | 0.0 | 67 | 28.4 | 32K564 | 71.0% | 10 | ... | 56 | 23.7 | 236 | 7 | 3.0 | 2016-17 | 234.000000 | 0.226367 | 32 | 5.337500 |
len(sorted_school_table.diversity_index)
322
#max(sorted_school_table.diversity_index)
b_school_map_table = sorted_school_table[-10:].copy()
b_school_map_table = b_school_map_table[['WKT', 'School Name','total_enrollment']]
b_school_map_table = b_school_map_table.rename({
'School Name': 'Name',
})
b_school_map_table['FillColor'] = 'r'
t = pd.merge(dist_table, mean_table, left_on='school_dis', right_on='district')
t[:3]
school_dis | shape_area | shape_leng | geometry_object | geometry_layer | geometry_proj4 | district | diversity_index | |
---|---|---|---|---|---|---|---|---|
0 | 16.0 | 4.676362e+07 | 35848.904605 | POLYGON ((-73.93311862859143 40.69579115384632... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 16 | 95.623066 |
1 | 32.0 | 5.189850e+07 | 37251.057847 | POLYGON ((-73.91180710069435 40.70343495202662... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 32 | 204.707566 |
2 | 6.0 | 9.634170e+07 | 70447.849084 | POLYGON ((-73.92640556921116 40.87762147653734... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 6 | 254.660597 |
# X = district_map_table.scaled_index
# len(X)
district_map_table.head()
school_dis | shape_area | shape_leng | geometry_object | geometry_layer | geometry_proj4 | district | diversity_index | WKT | scaled_index | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 16.0 | 4.676362e+07 | 35848.904605 | POLYGON ((-73.93311862859143 40.69579115384632... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 16 | 95.623066 | POLYGON ((-73.93311862859143 40.69579115384632... | 33.639628 |
1 | 32.0 | 5.189850e+07 | 37251.057847 | POLYGON ((-73.91180710069435 40.70343495202662... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 32 | 204.707566 | POLYGON ((-73.91180710069435 40.70343495202662... | 79.156481 |
2 | 6.0 | 9.634170e+07 | 70447.849084 | POLYGON ((-73.92640556921116 40.87762147653734... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 6 | 254.660597 | POLYGON ((-73.92640556921116 40.87762147653734... | 100.000000 |
3 | 31.0 | 1.604472e+09 | 434471.412859 | (POLYGON ((-74.05050806403247 40.5664220341608... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 31 | 57.090485 | MULTIPOLYGON (((-74.05050806403247 40.56642203... | 17.561433 |
4 | 7.0 | 9.226247e+07 | 65294.452403 | (POLYGON ((-73.89680883223774 40.7958084451597... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 7 | 129.066478 | MULTIPOLYGON (((-73.89680883223774 40.79580844... | 47.594304 |
district_map_table.loc[district_map_table['scaled_index'] < 25, 'FillColor'] = '#ffffcc'
district_map_table.loc[(district_map_table['scaled_index'] >= 25)
& (district_map_table['scaled_index'] < 50), 'FillColor'] = '#fed976'
district_map_table.loc[(district_map_table['scaled_index'] >= 50)
& (district_map_table['scaled_index'] < 75), 'FillColor'] = '#fd8d3c'
district_map_table.loc[(district_map_table['scaled_index'] >= 75), 'FillColor'] = '#e31a1c'
district_map_table
school_dis | shape_area | shape_leng | geometry_object | geometry_layer | geometry_proj4 | district | diversity_index | WKT | scaled_index | FillColor | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 16.0 | 4.676362e+07 | 35848.904605 | POLYGON ((-73.93311862859143 40.69579115384632... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 16 | 95.623066 | POLYGON ((-73.93311862859143 40.69579115384632... | 33.639628 | #fed976 |
1 | 32.0 | 5.189850e+07 | 37251.057847 | POLYGON ((-73.91180710069435 40.70343495202662... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 32 | 204.707566 | POLYGON ((-73.91180710069435 40.70343495202662... | 79.156481 | #e31a1c |
2 | 6.0 | 9.634170e+07 | 70447.849084 | POLYGON ((-73.92640556921116 40.87762147653734... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 6 | 254.660597 | POLYGON ((-73.92640556921116 40.87762147653734... | 100.000000 | #e31a1c |
3 | 31.0 | 1.604472e+09 | 434471.412859 | (POLYGON ((-74.05050806403247 40.5664220341608... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 31 | 57.090485 | MULTIPOLYGON (((-74.05050806403247 40.56642203... | 17.561433 | #ffffcc |
4 | 7.0 | 9.226247e+07 | 65294.452403 | (POLYGON ((-73.89680883223774 40.7958084451597... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 7 | 129.066478 | MULTIPOLYGON (((-73.89680883223774 40.79580844... | 47.594304 | #fed976 |
5 | 23.0 | 4.740069e+07 | 40317.452033 | (POLYGON ((-73.92044366203014 40.6656262871675... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 23 | 92.098260 | MULTIPOLYGON (((-73.92044366203014 40.66562628... | 32.168859 | #fed976 |
6 | 29.0 | 4.201981e+08 | 135035.241651 | POLYGON ((-73.73816144093141 40.72895809117297... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 29 | 61.776259 | POLYGON ((-73.73816144093141 40.72895809117297... | 19.516630 | #ffffcc |
7 | 26.0 | 4.247909e+08 | 125677.678898 | POLYGON ((-73.74344992332192 40.77824115291502... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 26 | 31.956221 | POLYGON ((-73.74344992332192 40.77824115291502... | 7.073851 | #ffffcc |
8 | 15.0 | 1.961534e+08 | 153439.165680 | POLYGON ((-73.98633135042395 40.69105051012824... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 15 | 80.325170 | POLYGON ((-73.98633135042395 40.69105051012824... | 27.256392 | #fed976 |
9 | 17.0 | 1.284414e+08 | 68341.398899 | POLYGON ((-73.92044366203014 40.6656262871675,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 17 | 73.062571 | POLYGON ((-73.92044366203014 40.6656262871675,... | 24.225983 | #ffffcc |
10 | 19.0 | 2.034175e+08 | 184183.167312 | (POLYGON ((-73.846736514711 40.60485301485166,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 19 | 73.366731 | MULTIPOLYGON (((-73.846736514711 40.6048530148... | 24.352898 | #ffffcc |
11 | 13.0 | 1.048706e+08 | 86635.210559 | POLYGON ((-73.97906084911834 40.70594602894087... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 13 | 51.905636 | POLYGON ((-73.97906084911834 40.70594602894087... | 15.397991 | #ffffcc |
12 | 18.0 | 1.751488e+08 | 121184.158477 | (POLYGON ((-73.86706149472118 40.5820879767934... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 18 | 134.915158 | MULTIPOLYGON (((-73.86706149472118 40.58208797... | 50.034738 | #fd8d3c |
13 | 20.0 | 2.426965e+08 | 94309.778946 | POLYGON ((-74.02552971543656 40.65147855069281... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 20 | 158.156244 | POLYGON ((-74.02552971543656 40.65147855069281... | 59.732368 | #fd8d3c |
14 | 3.0 | 1.134889e+08 | 52072.051321 | POLYGON ((-73.95671863064405 40.78660079332199... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 3 | 45.148505 | POLYGON ((-73.95671863064405 40.78660079332199... | 12.578495 | #ffffcc |
15 | 5.0 | 5.251977e+07 | 44469.588221 | POLYGON ((-73.93515659239551 40.83268240623763... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 5 | 74.205055 | POLYGON ((-73.93515659239551 40.83268240623763... | 24.702698 | #ffffcc |
16 | 9.0 | 8.341539e+07 | 46648.958586 | POLYGON ((-73.9212971968614 40.85428933985649,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 9 | 171.782841 | POLYGON ((-73.9212971968614 40.85428933985649,... | 65.418234 | #fd8d3c |
17 | 1.0 | 3.516075e+07 | 28641.276279 | POLYGON ((-73.97177410965313 40.72582128133706... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 1 | 74.392314 | POLYGON ((-73.97177410965313 40.72582128133706... | 24.780835 | #ffffcc |
18 | 14.0 | 1.503102e+08 | 95792.082090 | POLYGON ((-73.95439555417087 40.73911477252251... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 14 | 92.712426 | POLYGON ((-73.95439555417087 40.73911477252251... | 32.425127 | #fed976 |
19 | 4.0 | 5.262043e+07 | 52061.828459 | (POLYGON ((-73.92133752419399 40.8008521064970... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 4 | 74.202823 | MULTIPOLYGON (((-73.92133752419399 40.80085210... | 24.701767 | #ffffcc |
20 | 10.0 | 2.825415e+08 | 94957.570434 | POLYGON ((-73.86789798628736 40.90294017690526... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 10 | 151.978352 | POLYGON ((-73.86789798628736 40.90294017690526... | 57.154566 | #fd8d3c |
21 | 10.0 | 3.282963e+06 | 7883.372664 | (POLYGON ((-73.9089323517538 40.8721573479701,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 10 | 151.978352 | MULTIPOLYGON (((-73.9089323517538 40.872157347... | 57.154566 | #fd8d3c |
22 | 12.0 | 6.907182e+07 | 48527.595776 | POLYGON ((-73.88284445574813 40.84781722645163... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 12 | 118.038638 | POLYGON ((-73.88284445574813 40.84781722645163... | 42.992802 | #fed976 |
23 | 25.0 | 4.436285e+08 | 175827.007127 | POLYGON ((-73.82049919995312 40.80101146781899... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 25 | 65.688042 | POLYGON ((-73.82049919995312 40.80101146781899... | 21.148870 | #ffffcc |
24 | 28.0 | 2.475679e+08 | 114694.912786 | POLYGON ((-73.84485477879177 40.7357514698091,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 28 | 17.399788 | POLYGON ((-73.84485477879177 40.7357514698091,... | 1.000000 | #ffffcc |
25 | 24.0 | 3.949782e+08 | 127343.703736 | (POLYGON ((-73.90641585511733 40.7398683641967... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 24 | 189.934931 | MULTIPOLYGON (((-73.90641585511733 40.73986836... | 72.992417 | #fd8d3c |
26 | 30.0 | 3.181290e+08 | 150392.978241 | POLYGON ((-73.90647314610101 40.79018117520807... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 30 | 81.290729 | POLYGON ((-73.90647314610101 40.79018117520807... | 27.659283 | #fed976 |
27 | 21.0 | 2.101971e+08 | 123858.087345 | POLYGON ((-73.96184657346174 40.62757081710622... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 21 | 59.592857 | POLYGON ((-73.96184657346174 40.62757081710622... | 18.605579 | #ffffcc |
28 | 22.0 | 3.855533e+08 | 271718.504936 | (POLYGON ((-73.91990064270161 40.5996005215871... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 22 | 55.823892 | MULTIPOLYGON (((-73.91990064270161 40.59960052... | 17.032931 | #ffffcc |
29 | 27.0 | 7.955970e+08 | 589135.490708 | (POLYGON ((-73.82784008953526 40.5887858248046... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 27 | 34.876088 | MULTIPOLYGON (((-73.82784008953526 40.58878582... | 8.292202 | #ffffcc |
30 | 11.0 | 3.926651e+08 | 305305.869806 | (POLYGON ((-73.78833349834532 40.8346671297593... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 11 | 54.424475 | MULTIPOLYGON (((-73.78833349834532 40.83466712... | 16.449007 | #ffffcc |
31 | 8.0 | 2.588266e+08 | 223080.044096 | (POLYGON ((-73.83979488562292 40.8356192069902... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 8 | 111.027489 | MULTIPOLYGON (((-73.83979488562292 40.83561920... | 40.067313 | #fed976 |
32 | 2.0 | 2.804004e+08 | 212406.819436 | (POLYGON ((-74.0438776163991 40.69018767537123... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 2 | 36.504481 | MULTIPOLYGON (((-74.0438776163991 40.690187675... | 8.971669 | #ffffcc |
# EOF error
a_school_map_table = a_school_map_table.rename(columns={
'School Name': 'Name',
})
b_school_map_table = b_school_map_table.rename(columns={
'School Name': 'Name',
})
district_map_table['Name'] = district_map_table['district']
a_school_map_table
WKT | Name | total_enrollment | FillColor | |
---|---|---|---|---|
271 | POINT (-73.821532 40.737038) | Townsend Harris High School | 1110 | g |
27 | POINT (-73.953276 40.770288) | Eleanor Roosevelt High School | 543 | g |
5 | POINT (-73.979581 40.719416) | New Explorations into Science, Technology and ... | 1745 | g |
23 | POINT (-73.985723 40.741888) | Baruch College Campus High School | 440 | g |
74 | POINT (-73.947171 40.792932) | Young Women's Leadership School | 482 | g |
35 | POINT (-74.013921 40.718025) | Stuyvesant High School | 3365 | g |
315 | POINT (-74.117086 40.568299) | Staten Island Technical High School | 1312 | g |
142 | POINT (-73.889011 40.879958) | Bronx High School of Science | 2979 | g |
305 | POINT (-73.926977 40.754975) | Baccalaureate School for Global Education | 518 | g |
24 | POINT (-74.002222 40.742512) | N.Y.C. Lab School for Collaborative Studies | 531 | g |
sorted_school_table.tail()
DBN | WKT | School Name | asian_1 | asian_2 | black_1 | black_2 | dbn | economic_need_index | english_language_learners_1 | ... | students_with_disabilities_1 | students_with_disabilities_2 | total_enrollment | white_1 | white_2 | year | diversity_index | scaled_index | district | Total Grads - % of cohort | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
184 | 24Q744 | POINT (-73.871505 40.743228) | VOYAGES Preparatory | 23 | 9.2 | 47 | 18.7 | 24Q744 | 48.7% | 3 | ... | 15 | 6.0 | 251 | 12 | 4.8 | 2016-17 | 210.000000 | 0.035667 | 24 | 9.200000 |
220 | 17K568 | POINT (-73.923881 40.666251) | Brownsville Academy High School | 1 | 0.6 | 133 | 85.8 | 17K568 | 67.0% | 3 | ... | 36 | 23.2 | 155 | 0 | 0.0 | 2016-17 | 31.679487 | 0.372449 | 17 | 8.907143 |
76 | 05M285 | POINT (-73.939974 40.807692) | Harlem Renaissance High School | 7 | 3.0 | 99 | 42.9 | 05M285 | 77.4% | 31 | ... | 52 | 22.5 | 231 | 3 | 1.3 | 2016-17 | 100.555556 | 0.055118 | 5 | 7.521429 |
224 | 18K673 | POINT (-73.920658 40.659914) | East Brooklyn Community High School | 0 | 0.0 | 162 | 83.9 | 18K673 | 67.2% | 12 | ... | 67 | 34.7 | 193 | 4 | 2.1 | 2016-17 | 118.300000 | 0.030082 | 18 | 5.441667 |
322 | 32K564 | POINT (-73.915217 40.695875) | Bushwick Community High School | 0 | 0.0 | 67 | 28.4 | 32K564 | 71.0% | 10 | ... | 56 | 23.7 | 236 | 7 | 3.0 | 2016-17 | 234.000000 | 0.226367 | 32 | 5.337500 |
#a_school_map_table['radiusInPixels'] = 10
#b_school_map_table['radiusInPixels'] = 10
district_map_table.iloc[0]
school_dis 16 shape_area 4.67636e+07 shape_leng 35848.9 geometry_object POLYGON ((-73.93311862859143 40.69579115384632... geometry_layer geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b geometry_proj4 +proj=longlat +ellps=WGS84 +no_defs district 16 diversity_index 95.6231 WKT POLYGON ((-73.93311862859143 40.69579115384632... scaled_index 33.6396 FillColor #fed976 Name 16 Name: 0, dtype: object
# Extract columns
map_table = pd.concat([
district_map_table[['WKT','FillColor','Name']],
a_school_map_table[['WKT','FillColor','Name']],
b_school_map_table[['WKT','FillColor','Name']],
])
#top_schools[:3]
district_map_table
school_dis | shape_area | shape_leng | geometry_object | geometry_layer | geometry_proj4 | district | diversity_index | WKT | scaled_index | FillColor | Name | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 16.0 | 4.676362e+07 | 35848.904605 | POLYGON ((-73.93311862859143 40.69579115384632... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 16 | 95.623066 | POLYGON ((-73.93311862859143 40.69579115384632... | 33.639628 | #fed976 | 16 |
1 | 32.0 | 5.189850e+07 | 37251.057847 | POLYGON ((-73.91180710069435 40.70343495202662... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 32 | 204.707566 | POLYGON ((-73.91180710069435 40.70343495202662... | 79.156481 | #e31a1c | 32 |
2 | 6.0 | 9.634170e+07 | 70447.849084 | POLYGON ((-73.92640556921116 40.87762147653734... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 6 | 254.660597 | POLYGON ((-73.92640556921116 40.87762147653734... | 100.000000 | #e31a1c | 6 |
3 | 31.0 | 1.604472e+09 | 434471.412859 | (POLYGON ((-74.05050806403247 40.5664220341608... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 31 | 57.090485 | MULTIPOLYGON (((-74.05050806403247 40.56642203... | 17.561433 | #ffffcc | 31 |
4 | 7.0 | 9.226247e+07 | 65294.452403 | (POLYGON ((-73.89680883223774 40.7958084451597... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 7 | 129.066478 | MULTIPOLYGON (((-73.89680883223774 40.79580844... | 47.594304 | #fed976 | 7 |
5 | 23.0 | 4.740069e+07 | 40317.452033 | (POLYGON ((-73.92044366203014 40.6656262871675... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 23 | 92.098260 | MULTIPOLYGON (((-73.92044366203014 40.66562628... | 32.168859 | #fed976 | 23 |
6 | 29.0 | 4.201981e+08 | 135035.241651 | POLYGON ((-73.73816144093141 40.72895809117297... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 29 | 61.776259 | POLYGON ((-73.73816144093141 40.72895809117297... | 19.516630 | #ffffcc | 29 |
7 | 26.0 | 4.247909e+08 | 125677.678898 | POLYGON ((-73.74344992332192 40.77824115291502... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 26 | 31.956221 | POLYGON ((-73.74344992332192 40.77824115291502... | 7.073851 | #ffffcc | 26 |
8 | 15.0 | 1.961534e+08 | 153439.165680 | POLYGON ((-73.98633135042395 40.69105051012824... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 15 | 80.325170 | POLYGON ((-73.98633135042395 40.69105051012824... | 27.256392 | #fed976 | 15 |
9 | 17.0 | 1.284414e+08 | 68341.398899 | POLYGON ((-73.92044366203014 40.6656262871675,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 17 | 73.062571 | POLYGON ((-73.92044366203014 40.6656262871675,... | 24.225983 | #ffffcc | 17 |
10 | 19.0 | 2.034175e+08 | 184183.167312 | (POLYGON ((-73.846736514711 40.60485301485166,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 19 | 73.366731 | MULTIPOLYGON (((-73.846736514711 40.6048530148... | 24.352898 | #ffffcc | 19 |
11 | 13.0 | 1.048706e+08 | 86635.210559 | POLYGON ((-73.97906084911834 40.70594602894087... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 13 | 51.905636 | POLYGON ((-73.97906084911834 40.70594602894087... | 15.397991 | #ffffcc | 13 |
12 | 18.0 | 1.751488e+08 | 121184.158477 | (POLYGON ((-73.86706149472118 40.5820879767934... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 18 | 134.915158 | MULTIPOLYGON (((-73.86706149472118 40.58208797... | 50.034738 | #fd8d3c | 18 |
13 | 20.0 | 2.426965e+08 | 94309.778946 | POLYGON ((-74.02552971543656 40.65147855069281... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 20 | 158.156244 | POLYGON ((-74.02552971543656 40.65147855069281... | 59.732368 | #fd8d3c | 20 |
14 | 3.0 | 1.134889e+08 | 52072.051321 | POLYGON ((-73.95671863064405 40.78660079332199... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 3 | 45.148505 | POLYGON ((-73.95671863064405 40.78660079332199... | 12.578495 | #ffffcc | 3 |
15 | 5.0 | 5.251977e+07 | 44469.588221 | POLYGON ((-73.93515659239551 40.83268240623763... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 5 | 74.205055 | POLYGON ((-73.93515659239551 40.83268240623763... | 24.702698 | #ffffcc | 5 |
16 | 9.0 | 8.341539e+07 | 46648.958586 | POLYGON ((-73.9212971968614 40.85428933985649,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 9 | 171.782841 | POLYGON ((-73.9212971968614 40.85428933985649,... | 65.418234 | #fd8d3c | 9 |
17 | 1.0 | 3.516075e+07 | 28641.276279 | POLYGON ((-73.97177410965313 40.72582128133706... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 1 | 74.392314 | POLYGON ((-73.97177410965313 40.72582128133706... | 24.780835 | #ffffcc | 1 |
18 | 14.0 | 1.503102e+08 | 95792.082090 | POLYGON ((-73.95439555417087 40.73911477252251... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 14 | 92.712426 | POLYGON ((-73.95439555417087 40.73911477252251... | 32.425127 | #fed976 | 14 |
19 | 4.0 | 5.262043e+07 | 52061.828459 | (POLYGON ((-73.92133752419399 40.8008521064970... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 4 | 74.202823 | MULTIPOLYGON (((-73.92133752419399 40.80085210... | 24.701767 | #ffffcc | 4 |
20 | 10.0 | 2.825415e+08 | 94957.570434 | POLYGON ((-73.86789798628736 40.90294017690526... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 10 | 151.978352 | POLYGON ((-73.86789798628736 40.90294017690526... | 57.154566 | #fd8d3c | 10 |
21 | 10.0 | 3.282963e+06 | 7883.372664 | (POLYGON ((-73.9089323517538 40.8721573479701,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 10 | 151.978352 | MULTIPOLYGON (((-73.9089323517538 40.872157347... | 57.154566 | #fd8d3c | 10 |
22 | 12.0 | 6.907182e+07 | 48527.595776 | POLYGON ((-73.88284445574813 40.84781722645163... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 12 | 118.038638 | POLYGON ((-73.88284445574813 40.84781722645163... | 42.992802 | #fed976 | 12 |
23 | 25.0 | 4.436285e+08 | 175827.007127 | POLYGON ((-73.82049919995312 40.80101146781899... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 25 | 65.688042 | POLYGON ((-73.82049919995312 40.80101146781899... | 21.148870 | #ffffcc | 25 |
24 | 28.0 | 2.475679e+08 | 114694.912786 | POLYGON ((-73.84485477879177 40.7357514698091,... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 28 | 17.399788 | POLYGON ((-73.84485477879177 40.7357514698091,... | 1.000000 | #ffffcc | 28 |
25 | 24.0 | 3.949782e+08 | 127343.703736 | (POLYGON ((-73.90641585511733 40.7398683641967... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 24 | 189.934931 | MULTIPOLYGON (((-73.90641585511733 40.73986836... | 72.992417 | #fd8d3c | 24 |
26 | 30.0 | 3.181290e+08 | 150392.978241 | POLYGON ((-73.90647314610101 40.79018117520807... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 30 | 81.290729 | POLYGON ((-73.90647314610101 40.79018117520807... | 27.659283 | #fed976 | 30 |
27 | 21.0 | 2.101971e+08 | 123858.087345 | POLYGON ((-73.96184657346174 40.62757081710622... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 21 | 59.592857 | POLYGON ((-73.96184657346174 40.62757081710622... | 18.605579 | #ffffcc | 21 |
28 | 22.0 | 3.855533e+08 | 271718.504936 | (POLYGON ((-73.91990064270161 40.5996005215871... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 22 | 55.823892 | MULTIPOLYGON (((-73.91990064270161 40.59960052... | 17.032931 | #ffffcc | 22 |
29 | 27.0 | 7.955970e+08 | 589135.490708 | (POLYGON ((-73.82784008953526 40.5887858248046... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 27 | 34.876088 | MULTIPOLYGON (((-73.82784008953526 40.58878582... | 8.292202 | #ffffcc | 27 |
30 | 11.0 | 3.926651e+08 | 305305.869806 | (POLYGON ((-73.78833349834532 40.8346671297593... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 11 | 54.424475 | MULTIPOLYGON (((-73.78833349834532 40.83466712... | 16.449007 | #ffffcc | 11 |
31 | 8.0 | 2.588266e+08 | 223080.044096 | (POLYGON ((-73.83979488562292 40.8356192069902... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 8 | 111.027489 | MULTIPOLYGON (((-73.83979488562292 40.83561920... | 40.067313 | #fed976 | 8 |
32 | 2.0 | 2.804004e+08 | 212406.819436 | (POLYGON ((-74.0438776163991 40.69018767537123... | geo_export_42eedaf7-5cda-4346-b866-55c3ecc08a3b | +proj=longlat +ellps=WGS84 +no_defs | 2 | 36.504481 | MULTIPOLYGON (((-74.0438776163991 40.690187675... | 8.971669 | #ffffcc | 2 |
type(district_map_table)
geotable.GeoTable
target_path = target_folder + '/choropleth.csv'
map_table.to_csv(target_path, index=False)
print('a_geotable_path = %s' % target_path)
a_geotable_path = /tmp/choropleth.csv
map_table
WKT | FillColor | Name | |
---|---|---|---|
0 | POLYGON ((-73.93311862859143 40.69579115384632... | #fed976 | 16 |
1 | POLYGON ((-73.91180710069435 40.70343495202662... | #e31a1c | 32 |
2 | POLYGON ((-73.92640556921116 40.87762147653734... | #e31a1c | 6 |
3 | MULTIPOLYGON (((-74.05050806403247 40.56642203... | #ffffcc | 31 |
4 | MULTIPOLYGON (((-73.89680883223774 40.79580844... | #fed976 | 7 |
5 | MULTIPOLYGON (((-73.92044366203014 40.66562628... | #fed976 | 23 |
6 | POLYGON ((-73.73816144093141 40.72895809117297... | #ffffcc | 29 |
7 | POLYGON ((-73.74344992332192 40.77824115291502... | #ffffcc | 26 |
8 | POLYGON ((-73.98633135042395 40.69105051012824... | #fed976 | 15 |
9 | POLYGON ((-73.92044366203014 40.6656262871675,... | #ffffcc | 17 |
10 | MULTIPOLYGON (((-73.846736514711 40.6048530148... | #ffffcc | 19 |
11 | POLYGON ((-73.97906084911834 40.70594602894087... | #ffffcc | 13 |
12 | MULTIPOLYGON (((-73.86706149472118 40.58208797... | #fd8d3c | 18 |
13 | POLYGON ((-74.02552971543656 40.65147855069281... | #fd8d3c | 20 |
14 | POLYGON ((-73.95671863064405 40.78660079332199... | #ffffcc | 3 |
15 | POLYGON ((-73.93515659239551 40.83268240623763... | #ffffcc | 5 |
16 | POLYGON ((-73.9212971968614 40.85428933985649,... | #fd8d3c | 9 |
17 | POLYGON ((-73.97177410965313 40.72582128133706... | #ffffcc | 1 |
18 | POLYGON ((-73.95439555417087 40.73911477252251... | #fed976 | 14 |
19 | MULTIPOLYGON (((-73.92133752419399 40.80085210... | #ffffcc | 4 |
20 | POLYGON ((-73.86789798628736 40.90294017690526... | #fd8d3c | 10 |
21 | MULTIPOLYGON (((-73.9089323517538 40.872157347... | #fd8d3c | 10 |
22 | POLYGON ((-73.88284445574813 40.84781722645163... | #fed976 | 12 |
23 | POLYGON ((-73.82049919995312 40.80101146781899... | #ffffcc | 25 |
24 | POLYGON ((-73.84485477879177 40.7357514698091,... | #ffffcc | 28 |
25 | MULTIPOLYGON (((-73.90641585511733 40.73986836... | #fd8d3c | 24 |
26 | POLYGON ((-73.90647314610101 40.79018117520807... | #fed976 | 30 |
27 | POLYGON ((-73.96184657346174 40.62757081710622... | #ffffcc | 21 |
28 | MULTIPOLYGON (((-73.91990064270161 40.59960052... | #ffffcc | 22 |
29 | MULTIPOLYGON (((-73.82784008953526 40.58878582... | #ffffcc | 27 |
30 | MULTIPOLYGON (((-73.78833349834532 40.83466712... | #ffffcc | 11 |
31 | MULTIPOLYGON (((-73.83979488562292 40.83561920... | #fed976 | 8 |
32 | MULTIPOLYGON (((-74.0438776163991 40.690187675... | #ffffcc | 2 |
271 | POINT (-73.821532 40.737038) | g | Townsend Harris High School |
27 | POINT (-73.953276 40.770288) | g | Eleanor Roosevelt High School |
5 | POINT (-73.979581 40.719416) | g | New Explorations into Science, Technology and ... |
23 | POINT (-73.985723 40.741888) | g | Baruch College Campus High School |
74 | POINT (-73.947171 40.792932) | g | Young Women's Leadership School |
35 | POINT (-74.013921 40.718025) | g | Stuyvesant High School |
315 | POINT (-74.117086 40.568299) | g | Staten Island Technical High School |
142 | POINT (-73.889011 40.879958) | g | Bronx High School of Science |
305 | POINT (-73.926977 40.754975) | g | Baccalaureate School for Global Education |
24 | POINT (-74.002222 40.742512) | g | N.Y.C. Lab School for Collaborative Studies |
203 | POINT (-73.992151 40.642619) | r | West Brooklyn Community High School |
89 | POINT (-73.905389 40.818703) | r | Jill Chaifetz Transfer High School |
104 | POINT (-73.85593 40.821218) | r | Bronx Community High School |
252 | POINT (-73.904143 40.677528) | r | Aspirations Diploma Plus High School |
90 | POINT (-73.919949 40.818645) | r | Bronx Haven High School |
184 | POINT (-73.871505 40.743228) | r | VOYAGES Preparatory |
220 | POINT (-73.923881 40.666251) | r | Brownsville Academy High School |
76 | POINT (-73.939974 40.807692) | r | Harlem Renaissance High School |
224 | POINT (-73.920658 40.659914) | r | East Brooklyn Community High School |
322 | POINT (-73.915217 40.695875) | r | Bushwick Community High School |
#%matplotlib inline
#t['economic_need_index'].plot(kind='bar')
sorted_school_table.to_csv('data.csv', index=False)
sorted_school_table.iloc[0]
DBN 25Q525 WKT POINT (-73.821532 40.737038) School Name Townsend Harris High School asian_1 644 asian_2 58 black_1 60 black_2 5.4 dbn 25Q525 economic_need_index 26.1% english_language_learners_1 0 english_language_learners_2 0 female_1 770 female_2 69.4 grade_1 0 grade_10 295 grade_11 290 grade_12 261 grade_2 0 grade_3 0 grade_4 0 grade_5 0 grade_6 0 grade_7 0 grade_8 0 grade_9 264 grade_k 0 grade_pk_half_day_full_day 0 hispanic_1 127 hispanic_2 11.4 male_1 340 male_2 30.6 multiple_race_categories_not_represented_1 45 multiple_race_categories_not_represented_2 4.1 poverty_1 599 poverty_2 54 school_name Townsend Harris High School students_with_disabilities_1 29 students_with_disabilities_2 2.6 total_enrollment 1110 white_1 234 white_2 21.1 year 2016-17 diversity_index 16.5976 scaled_index 0.016038 district 25 Total Grads - % of cohort 99.5526 Name: 271, dtype: object
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# Fixing random state for reproducibility
np.random.seed(19680801)
x = sorted_school_table['scaled_index'].values
y = sorted_school_table[selected_outcome].values
#colors = np.random.rand(N)
#area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
x.sort()
y.sort()
x = x[:-5]
y = y[:-5]
np.random.shuffle(x)
np.random.shuffle(y)
#axes = plt.scatter(x, y, s=area, c=colors, alpha=0.5)
axes = plt.scatter(x, y, alpha=0.5)
plt.ylabel(selected_outcome)
plt.xlabel('Diversity Index')
plt.show()
x[:-5]
array([0. , 0.00048444, 0.00067926, 0.00171858, 0.00172513, 0.00233685, 0.00283372, 0.00295918, 0.00322157, 0.00386555, 0.00386874, 0.00498669, 0.00622097, 0.0062449 , 0.00684392, 0.00704525, 0.00725714, 0.0072967 , 0.00742497, 0.00743252, 0.00752834, 0.00757928, 0.00782313, 0.00805081, 0.01009667, 0.01036735, 0.01075276, 0.01085343, 0.01086899, 0.01129009, 0.01134694, 0.01308784, 0.01321995, 0.01382189, 0.01382189, 0.01383673, 0.01416625, 0.01433895, 0.01482993, 0.01534131, 0.01537783, 0.01555985, 0.01572012, 0.01591837, 0.016038 , 0.01659864, 0.01680816, 0.01711565, 0.01734694, 0.0174664 , 0.01759184, 0.0177551 , 0.01782428, 0.01788018, 0.01891582, 0.01895201, 0.0202551 , 0.02071429, 0.02102041, 0.02128728, 0.02141399, 0.02183673, 0.0219666 , 0.02204898, 0.02232143, 0.02241983, 0.02281179, 0.02323129, 0.02363265, 0.02384615, 0.02399417, 0.02431973, 0.02437164, 0.02450387, 0.02469388, 0.02472109, 0.02484694, 0.02504937, 0.02549165, 0.02555102, 0.02586271, 0.02613703, 0.02626586, 0.02638655, 0.02648163, 0.02744898, 0.02747681, 0.02813776, 0.02911079, 0.02913931, 0.02994169, 0.02996708, 0.03008163, 0.03068027, 0.03179592, 0.032 , 0.03204082, 0.03227041, 0.03262857, 0.03291545, 0.03397959, 0.03412245, 0.03417312, 0.03438424, 0.0352076 , 0.03566719, 0.03581096, 0.03593407, 0.03664399, 0.03683673, 0.03693878, 0.03729592, 0.0373399 , 0.03745306, 0.03823673, 0.03830904, 0.03875283, 0.03946429, 0.03976676, 0.0404898 , 0.04061224, 0.04076531, 0.04132245, 0.04171429, 0.04197279, 0.04197668, 0.04198516, 0.04209184, 0.04239332, 0.04310832, 0.04367347, 0.04404082, 0.04416327, 0.04428571, 0.04443878, 0.04533528, 0.0457398 , 0.0458657 , 0.04629738, 0.04658163, 0.04658892, 0.04664723, 0.04710204, 0.04734694, 0.04745826, 0.04750806, 0.04771961, 0.04790816, 0.04820408, 0.04909621, 0.04930612, 0.04979592, 0.05049563, 0.05058957, 0.05102041, 0.05129252, 0.05198711, 0.0522449 , 0.0524898 , 0.05322981, 0.05368805, 0.05413265, 0.05456498, 0.05469388, 0.05511774, 0.0552381 , 0.05536735, 0.05546939, 0.05594499, 0.0564723 , 0.05653061, 0.05653061, 0.05694952, 0.05725417, 0.0577551 , 0.05877551, 0.05908764, 0.05931973, 0.05995198, 0.06020408, 0.06068323, 0.06081633, 0.06096939, 0.06102041, 0.06122449, 0.06138776, 0.06176871, 0.06304922, 0.06317784, 0.06387755, 0.06412965, 0.0644898 , 0.06503759, 0.06513806, 0.06568206, 0.06618524, 0.06661224, 0.06708283, 0.06718367, 0.06773469, 0.06843537, 0.06954082, 0.07 , 0.07007653, 0.07013605, 0.07036014, 0.07038265, 0.07061224, 0.07232009, 0.07315789, 0.07338776, 0.07346939, 0.07393586, 0.07469388, 0.07510204, 0.07518367, 0.0755102 , 0.07778426, 0.0784898 , 0.07899529, 0.08014577, 0.08094388, 0.08102041, 0.08142857, 0.08399417, 0.085 , 0.08521193, 0.08605965, 0.08622449, 0.08661808, 0.09 , 0.09125364, 0.09234694, 0.09295918, 0.09387755, 0.09428571, 0.09473469, 0.09476809, 0.09533752, 0.09622449, 0.09646782, 0.09721707, 0.09938776, 0.10178108, 0.10261596, 0.10271137, 0.10390895, 0.10459184, 0.10538776, 0.10955102, 0.10979592, 0.11010204, 0.11077551, 0.11236735, 0.11346939, 0.11444898, 0.11680272, 0.11714286, 0.11802721, 0.11886827, 0.11959184, 0.12027211, 0.12054422, 0.12106122, 0.12240816, 0.12436735, 0.1244898 , 0.12639456, 0.12767347, 0.13097959, 0.13146939, 0.13428571, 0.13795918, 0.142 , 0.14346939, 0.14438776, 0.14515306, 0.14612245, 0.1484898 , 0.15632653, 0.15658892, 0.15755102, 0.15825073, 0.15947522, 0.15965015, 0.16153061, 0.16442177, 0.16638484, 0.16708455, 0.16778426, 0.17204082, 0.17420408, 0.17740525, 0.17934694, 0.17959184, 0.18081633, 0.18265306, 0.18461224, 0.19102041, 0.19321429, 0.19530612, 0.21387755, 0.21681633, 0.2255102 , 0.22636735, 0.24877551, 0.25428571, 0.27295918, 0.28367347, 0.29806122, 0.29979592, 0.33632653, 0.36204082, 0.37244898, 0.37346939, 0.38244898, 0.38979592])
# plt.scatter?
# Save file to target folder to include it in the result download
target_path = target_folder + '/c.png'
figure = axes.get_figure()
figure.savefig(target_path)
print(f'c_image_path = {target_path}')
c_image_path = /tmp/c.png
from sklearn.linear_model import LinearRegression
model = LinearRegression()
X = sorted_school_table[['scaled_index']].values
X
array([[1.60380014e-02], [1.07527601e-02], [2.47210884e-02], [4.98669033e-03], [3.82367347e-02], [2.38461538e-02], [5.65306122e-02], [1.80816327e-01], [7.23200859e-02], [4.53352770e-02], [6.95408163e-02], [1.77551020e-02], [7.42857143e-01], [6.13877551e-02], [1.58250729e-01], [5.05895692e-02], [2.95918367e-03], [7.43252140e-03], [6.61852433e-02], [3.72959184e-02], [0.00000000e+00], [1.24489796e-01], [1.89158163e-02], [5.41326531e-02], [1.24367347e-01], [2.33684683e-03], [4.41632653e-02], [5.46938776e-02], [4.66472303e-02], [7.03826531e-02], [1.75918367e-02], [1.38218924e-02], [4.36734694e-02], [8.05081216e-03], [4.73469388e-02], [5.04956268e-02], [4.26326531e-01], [3.74530612e-02], [7.29670330e-03], [1.08689928e-02], [4.71020408e-02], [2.62658577e-02], [4.77196096e-02], [1.43469388e-01], [2.98061224e-01], [1.18868275e-01], [1.68081633e-02], [2.64816327e-02], [1.42000000e-01], [1.72512755e-03], [1.78242823e-02], [1.20544218e-01], [3.66439909e-02], [2.74489796e-02], [1.08534323e-02], [9.23469388e-02], [9.12536443e-02], [2.43197279e-02], [5.72541744e-02], [1.78801843e-02], [3.89795918e-01], [1.77405248e-01], [6.41296519e-02], [1.67784257e-01], [3.86554622e-03], [2.02551020e-02], [1.37959184e-01], [1.46122449e-01], [3.20408163e-02], [9.47346939e-02], [5.99519808e-02], [6.31778426e-02], [5.19871106e-02], [1.19591837e-01], [6.24489796e-03], [6.38775510e-02], [8.50000000e-02], [1.02615955e-01], [3.41731175e-02], [9.53375196e-02], [5.93197279e-02], [3.06802721e-02], [6.77346939e-02], [6.44897959e-02], [4.17142857e-02], [7.46938776e-02], [1.48299320e-02], [5.36880466e-02], [1.59475219e-01], [2.91107872e-02], [6.06832298e-02], [1.03908948e-01], [6.79256777e-04], [2.36326531e-02], [2.10204082e-02], [1.13469388e-01], [1.38367347e-02], [1.59183673e-02], [7.03601441e-02], [3.92040816e-01], [6.84353741e-02], [7.34693878e-02], [8.62244898e-02], [8.52119309e-02], [5.22448980e-02], [1.57201166e-02], [6.70828331e-02], [3.68367347e-02], [4.65889213e-02], [1.95306122e-01], [1.82653061e-01], [9.00000000e-02], [2.48469388e-02], [3.73399015e-02], [1.64421769e-01], [6.09693878e-02], [2.14139942e-02], [9.93877551e-02], [2.99795918e-01], [2.54916512e-02], [8.10204082e-02], [6.08163265e-02], [2.81377551e-02], [3.22157434e-03], [1.31469388e-01], [3.22704082e-02], [1.14448980e-01], [4.93061224e-02], [4.65816327e-02], [2.74768089e-02], [1.12900875e-02], [1.66384840e-01], [3.59340659e-02], [7.25714286e-03], [7.57927786e-03], [4.84436199e-04], [5.53673469e-02], [1.72040816e-01], [2.24198251e-02], [4.19727891e-02], [5.54693878e-02], [2.61370262e-02], [1.65986395e-02], [1.18027211e-01], [1.67084548e-01], [2.28117914e-02], [1.44387755e-01], [2.20489796e-02], [7.42496999e-03], [2.46938776e-02], [1.45153061e-01], [1.09795918e-01], [1.09551020e-01], [1.74204082e-01], [1.10775510e-01], [1.16802721e-01], [4.07653061e-02], [4.69591837e-01], [1.00966702e-02], [1.26394558e-01], [2.45038705e-02], [4.74582560e-02], [3.73469388e-01], [3.87528345e-02], [6.50375940e-02], [1.41662519e-02], [8.09438776e-02], [6.56820623e-02], [5.77551020e-02], [2.18367347e-02], [2.54285714e-01], [1.91020408e-01], [1.32199546e-02], [9.38775510e-02], [4.31083203e-02], [2.63865546e-02], [1.34285714e-01], [1.93214286e-01], [4.19766764e-02], [4.23933210e-02], [7.51836735e-02], [6.17687075e-02], [1.79591837e-01], [1.04591837e-01], [3.20000000e-02], [2.19666048e-02], [4.58657011e-02], [1.56588921e-01], [6.12244898e-02], [1.13469388e-02], [3.58109560e-02], [2.83673469e-01], [7.84897959e-02], [7.01360544e-02], [1.74664012e-02], [1.03673469e-02], [4.79081633e-02], [5.24897959e-02], [6.22097115e-03], [1.89520132e-02], [7.77842566e-02], [4.62973761e-02], [7.31578947e-02], [5.65306122e-02], [9.62244898e-02], [4.13224490e-02], [6.51380552e-02], [5.59449867e-02], [1.53778268e-02], [4.42857143e-02], [4.75080559e-02], [1.38218924e-02], [4.82040816e-02], [2.99416910e-02], [5.10204082e-02], [7.39358601e-02], [3.52076003e-02], [1.00000000e+00], [7.00000000e-02], [2.50493746e-02], [5.52380952e-02], [3.86874174e-03], [6.84392067e-03], [1.71858217e-03], [7.06122449e-02], [2.55510204e-02], [8.60596546e-02], [1.61530612e-01], [4.04897959e-02], [1.57551020e-01], [2.16816327e-01], [9.72170686e-02], [4.06122449e-02], [5.69495166e-02], [7.00765306e-02], [4.97959184e-02], [2.43716434e-02], [3.39795918e-02], [3.29154519e-02], [3.94642857e-02], [1.56326531e-01], [4.57397959e-02], [1.20272109e-01], [7.04525288e-03], [1.27673469e-01], [4.40408163e-02], [3.43842365e-02], [1.01781076e-01], [3.82448980e-01], [8.39941691e-02], [6.66122449e-02], [7.82312925e-03], [1.84612245e-01], [1.30878438e-02], [1.73469388e-02], [2.83372365e-03], [4.44387755e-02], [3.97667638e-02], [2.58627087e-02], [3.69387755e-02], [9.64678179e-02], [2.91393079e-02], [1.12367347e-01], [3.26285714e-02], [5.87755102e-02], [2.13877551e-01], [8.66180758e-02], [7.51020408e-02], [7.52834467e-03], [1.05387755e-01], [5.32298137e-02], [5.45649839e-02], [2.07142857e-02], [4.90962099e-02], [1.43389530e-02], [1.02711370e-01], [5.12925170e-02], [3.17959184e-02], [3.36326531e-01], [1.79346939e-01], [2.32312925e-02], [6.10204082e-02], [1.48489796e-01], [2.23214286e-02], [6.30492197e-02], [1.30979592e-01], [3.83090379e-02], [1.71156463e-02], [1.53413089e-02], [2.72959184e-01], [4.20918367e-02], [2.48775510e-01], [7.89952904e-02], [7.33877551e-02], [1.21061224e-01], [1.55598456e-02], [5.64723032e-02], [8.01457726e-02], [1.59650146e-01], [9.47680891e-02], [5.90876351e-02], [9.42857143e-02], [3.41224490e-02], [6.71836735e-02], [8.14285714e-02], [1.22408163e-01], [1.10102041e-01], [6.02040816e-02], [3.62040816e-01], [2.12872841e-02], [2.25510204e-01], [9.29591837e-02], [1.17142857e-01], [7.55102041e-02], [2.39941691e-02], [2.99670836e-02], [4.19851577e-02], [3.56671900e-02], [3.72448980e-01], [5.51177394e-02], [3.00816327e-02], [2.26367347e-01]])
y = sorted_school_table[selected_outcome].values
y
array([99.55263158, 99.3452381 , 98.50344828, 98.33404255, 98.08157895, 97.70862069, 97.53928571, 97.5031746 , 96.92105263, 96.64081633, 96.31333333, 96.275 , 95.79166667, 95.77837838, 95.24761905, 95.1106383 , 94.78888889, 94.758 , 94.6962963 , 94.59183673, 93.81666667, 93.55454545, 93.32105263, 92.73174603, 92.672 , 92.33513514, 91.9875 , 91.92545455, 91.86382979, 91.7 , 91.41904762, 91.33913043, 91.12857143, 90.55087719, 90.4625 , 89.68333333, 89.025 , 88.99302326, 88.825 , 88.68372093, 88.54651163, 87.87647059, 86.53095238, 86.52380952, 86.11666667, 85.51111111, 85.46851852, 85.35833333, 85.14516129, 85.0862069 , 84.9968254 , 84.62173913, 84.244 , 84.20952381, 83.67906977, 83.61666667, 83.59583333, 83.46666667, 83.4 , 83.33928571, 83.07608696, 82.95714286, 82.19756098, 81.58684211, 81.55882353, 81.48181818, 81.45925926, 81.45686275, 80.99090909, 80.90571429, 80.79183673, 80.60285714, 80.45172414, 80.388 , 80.15714286, 79.91052632, 79.75714286, 79.50784314, 79.148 , 79.07818182, 78.83617021, 78.81166667, 78.76666667, 78.65 , 78.40263158, 78.19166667, 78.03571429, 77.84657534, 77.22916667, 77.04444444, 76.96666667, 76.75 , 76.71777778, 76.66 , 76.56410256, 75.81746032, 75.55714286, 75.15945946, 75.01764706, 74.84736842, 74.73333333, 74.65238095, 74.3875 , 74.25357143, 74.1 , 73.9 , 73.64222222, 73.42051282, 73.4012987 , 73.21842105, 73.1952381 , 73.17692308, 73.04626866, 72.91621622, 72.9027027 , 72.80833333, 72.47222222, 72.17916667, 72.14857143, 72.08928571, 71.74166667, 71.65531915, 71.43571429, 71.40526316, 71.31666667, 71.19 , 70.96428571, 70.91267606, 70.82162162, 70.81714286, 70.80769231, 70.7375 , 70.7325 , 70.5212766 , 70.4625 , 70.41071429, 70.34230769, 70.19047619, 70.17313433, 70.0875 , 70.02077922, 69.97058824, 69.77857143, 69.45675676, 68.76451613, 68.65102041, 68.64285714, 68.46363636, 68.36923077, 68.15 , 68.09714286, 67.5952381 , 67.44 , 67.36530612, 67.29152542, 67.20952381, 67.01384615, 66.93214286, 66.63913043, 66.3875 , 66.124 , 65.57857143, 65.41086957, 65.34285714, 64.93877551, 64.83333333, 64.75526316, 64.74705882, 64.74166667, 64.43225806, 64.375 , 64.2 , 64.18703704, 64.09459459, 63.91111111, 63.88461538, 63.88039216, 63.85882353, 63.81020408, 63.72 , 63.53246753, 63.46875 , 63.32608696, 63.31071429, 63.16140351, 62.98888889, 62.86875 , 62.74761905, 62.53584906, 62.49268293, 62.016 , 61.99555556, 61.89642857, 61.86190476, 61.75555556, 61.6952381 , 61.664 , 61.56551724, 61.27066667, 61.16461538, 61.15813953, 60.92222222, 60.83658537, 60.49047619, 60.36458333, 60.10714286, 60.09791667, 59.87922078, 59.75119048, 59.66964286, 59.32244898, 59.12 , 59.08333333, 59.08 , 59.07843137, 58.78571429, 58.70784314, 58.7 , 58.63773585, 58.62653061, 58.46666667, 58.42909091, 58.39545455, 58.35306122, 58.14285714, 58.14166667, 58.13409091, 57.95 , 57.88431373, 57.85185185, 57.59090909, 57.14428571, 57.01463415, 56.75263158, 56.5 , 56.44230769, 56.2627907 , 56.26219512, 55.89807692, 55.60140845, 55.45652174, 55.25974026, 55.06428571, 55.01369863, 54.96 , 54.94677419, 54.84166667, 54.67272727, 54.35555556, 54.316 , 53.25625 , 53.16 , 53.08285714, 52.47460317, 52.31086957, 51.9047619 , 51.02037037, 50.82077922, 50.75584416, 50.21818182, 50.12857143, 49.90238095, 49.81547619, 49.15106383, 49.07142857, 48.68181818, 48.52413793, 48.42142857, 47.92142857, 47.77162162, 47.73921569, 47.30701754, 47.28965517, 46.77777778, 46.77446809, 46.6 , 46.35584416, 46.2012987 , 46.17012987, 45.02857143, 44.25324675, 42.90363636, 42.49111111, 42.44675325, 41.92678571, 40.85789474, 39.55507246, 38.94615385, 37.96721311, 37.47346939, 37.20350877, 36.28032787, 36.25862069, 33.62 , 27.39459459, 27.3 , 26.96666667, 25.82653061, 24.84166667, 20.28333333, 20.256 , 19.83888889, 19.64915254, 17.06666667, 15.86046512, 15.65 , 15.41034483, 15.38 , 14.46428571, 14.37826087, 13.53888889, 13.47857143, 12.95483871, 12.92916667, 10.68333333, 10.335 , 9.5 , 9.2 , 8.90714286, 7.52142857, 5.44166667, 5.3375 ])
model.fit(X, y)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
from sklearn.model_selection import cross_val_score
models = []
scores = []
def train(model, X):
model.fit(X, y)
models.append(model)
score = cross_val_score(
model, X, y, cv=3,
scoring='neg_mean_absolute_error',
).mean()
scores.append(score)
return score
model_scores = cross_val_score(model, X, y, cv=3, scoring='neg_mean_absolute_error')
print('average_negative_mean_error = %s' % np.mean(model_scores))
There is a lot you can do without signing in.
To take full advantage of our site, we recommend that you sign in.
Each user starts with 1,000 free credits.