Our tool does cool predictive statistics stuff.
Thanks to the following groups for making this work possible:
{ a : income ? Specify the income level } { a_select : Borough ? Choose your borough } { a_text : Some Text } { a_table ? Thanks! }
#CrossCompute
a = 50000
a_select = """
Queens
Queens
Bronx
Manhattan
Brooklyn
Staten Island
"""
target_folder = '/tmp'
#Output render file as table: print('abcdef_table_path = %s' % target_path)
#To save table: target_path = target_folder + '/b.csv' output_geotable.to_csv(target_path, index=False)
#To save graph: target_path = target_folder + '/c.png' figure = axes.get_figure() figure.savefig(target_path)
#dummy = region.sort_values(by = 'NTA')
#region.loc[region['LocationID'] == 65]
#polygon = t.iloc[2].geometry_object
#nta = n.geometry_object
#a = [x.intersection(polygon).area for x in nta]
#import numpy as np
#np.argmax(a)
#n.iloc[np.argmax(a)]