Optimization Example




Pay Notebook Creator: Roy Hyunjin Han0
Set Container: Numerical CPU with TINY Memory for 10 Minutes 0
Total0
In [51]:
# CrossCompute
available_spots_table_path = 'billboard-spots.csv'
budget_in_dollars = 250000
target_folder = '/tmp'
In [52]:
import pandas
t = pandas.read_csv(available_spots_table_path)
In [53]:
t = t.dropna(subset=['Total Minutes', 'Rate'])
t
Out[53]:
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
Nickname Total Minutes Rate
0 American Eagle 1140 69600
1 X 2280 129600
2 Y 3420 180000
3 Sony/Fox Screen (Times Square 1) 1080 22500
4 ABC Supersign 900 53000
5 Times Square 2 1710 103250
6 W Hotel (Broadway and 47th Street) 2280 70000
7 Z 4560 125000
In [54]:
values = []
weights = []
for index, row in t.iterrows():
    values.append(row['Total Minutes'])
    weights.append(row['Rate'])
weights = [weights]
In [55]:
values
Out[55]:
[1140, 2280, 3420, 1080, 900, 1710, 2280, 4560]
In [56]:
weights
Out[56]:
[[69600, 129600, 180000, 22500, 53000, 103250, 70000, 125000]]
In [57]:
import subprocess
subprocess.call('pip install ortools'.split())
Out[57]:
0
In [58]:
from ortools.algorithms import pywrapknapsack_solver

solver = pywrapknapsack_solver.KnapsackSolver(
    pywrapknapsack_solver.KnapsackSolver.
    KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    'KnapsackExample')
In [59]:
'''
values = [
    360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
    78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
    87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
    312]
weights = [[
    7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
    42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
    3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13]]
capacities = [850]
'''
capacities = [budget_in_dollars]
In [60]:
capacities
Out[60]:
[250000]
In [61]:
solver.Init(values, weights, capacities)
computed_value = solver.Solve()
In [62]:
packed_items = []
packed_weights = []
total_weight = 0
print('Total value =', computed_value)
for i in range(len(values)):
    if solver.BestSolutionContains(i):
        packed_items.append(i)
        packed_weights.append(weights[0][i])
        total_weight += weights[0][i]
print('Total weight:', total_weight)
print('Packed items:', packed_items)
print('Packed_weights:', packed_weights)
Total value = 7920
Total weight: 217500
Packed items: [3, 6, 7]
Packed_weights: [22500, 70000, 125000]
In [63]:
t.iloc[packed_items]
Out[63]:
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
Nickname Total Minutes Rate
3 Sony/Fox Screen (Times Square 1) 1080 22500
6 W Hotel (Broadway and 47th Street) 2280 70000
7 Z 4560 125000
In [64]:
from os.path import join
target_path = join(target_folder, 'selected-spots.csv')
t.iloc[packed_items].to_csv(target_path, index=False)
print(f'selected_spots_table_path = {target_path}')
selected_spots_table_path = /tmp/selected-spots.csv