url = 'https://data.cityofnewyork.us/api/views/sv6e-j8t9/rows.csv?accessType=DOWNLOAD'
import pandas
t = pandas.read_csv(url)
t[:10]
t[['Total Minutes', 'Rate']]
t[['Total Minutes', 'Rate']].dropna()
filtered_t = t[['Total Minutes', 'Rate']].dropna()
filtered_t
values = []
weights = []
for index, row in filtered_t.iterrows():
values.append(int(row['Total Minutes']))
weights.append(int(row['Rate']))
weights = [weights]
values
weights
budget = 250000
import subprocess
subprocess.call('pip install ortools'.split())
from ortools.algorithms import pywrapknapsack_solver
solver = pywrapknapsack_solver.KnapsackSolver(
pywrapknapsack_solver.KnapsackSolver.
KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
'KnapsackExample')
'''
values = [
360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
312]
weights = [[
7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13]]
capacities = [850]
'''
capacities = [budget]
capacities
solver.Init(values, weights, capacities)
computed_value = solver.Solve()
packed_items = []
packed_weights = []
total_weight = 0
print('Total value =', computed_value)
for i in range(len(values)):
if solver.BestSolutionContains(i):
packed_items.append(i)
packed_weights.append(weights[0][i])
total_weight += weights[0][i]
print('Total weight:', total_weight)
print('Packed items:', packed_items)
print('Packed_weights:', packed_weights)
t.dropna(subset=['Total Minutes', 'Rate']).iloc[packed_items]